Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 45(8): 2327-2330, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287225

RESUMO

We investigate photon-counting 3D integral imaging (PCII) with an electron multiplying charged-coupled device (EM-CCD) camera using dedicated statistical models. Using conventional integral imaging reconstruction methods with this camera in photon-counting conditions may result in degraded reconstructed image quality if multiple photons are detected simultaneously in a given pixel. We propose an estimation method derived from the photon detection statistical model of the EM-CCD to address the problems caused by multiple photons detected at the same pixel and provide improved 3D reconstructions. We also present a simplified version of this statistical method that can be used under the correct conditions. The imaging performance of these methods is evaluated on experimental data by the peak signal-to-noise ratio and the structural similarity index measure. The experiments demonstrate that 3D integral imaging substantially outperforms 2D imaging in degraded conditions. Furthermore, we achieve imaging in photon-counting conditions where, on average, less than a single photon per pixel is detected by the camera. To the best of our knowledge, this is the first report of PCII with the EM-CCD camera employing its statistical model in 3D reconstruction of PCII.

2.
Opt Express ; 27(19): 26355-26368, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674519

RESUMO

Imaging in poorly illuminated environments using three-dimensional (3D) imaging with passive imaging sensors that operate in the visible spectrum is a formidable task due to the low number of photons detected. 3D integral imaging, which integrates multiple two-dimensional perspectives, is expected to perform well in the presence of noise, as well as statistical fluctuation in the detected number of photons. In this paper, we present an investigation of 3D integral imaging in low-light-level conditions, where as low as a few photons and as high as several tens of photons are detected on average per pixel. In the experimental verification, we use an electron multiplying charge-coupled device (EM-CCD) and a scientific complementary metal-oxide-semiconductor (sCMOS) camera. For the EM-CCD, a theoretical model for the probability distribution of the pixel values is derived, then fitted with the experimental data to determine the camera parameters. Likewise, pixelwise calibration is performed on the sCMOS to determine the camera parameters for further analysis. Theoretical derivation of the expected signal-to-noise-ratio is provided for each image sensor and corroborated by the experimental findings. Further comparison between the cameras includes analysis of the contrast-to-noise ratio (CNR) as well as the perception-based image quality estimator (PIQE). Improvement of image quality metrics in the 3D reconstructed images is successfully confirmed compared with those of the 2D images. To the best of our knowledge, this is the first experimental report of low-light-level 3D integral imaging with as little as a few photons detected per pixel on average to improve scene visualization including occlusion removal from the scene.

3.
Sci Rep ; 7(1): 2110, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522868

RESUMO

In the field of nuclear medicine, single photon emission tomography and positron emission tomography are the two most common techniques in molecular imaging, but the available radioactive tracers have been limited either by energy range or difficulties in production and delivery. Thus, the use of a Compton camera, which features gamma-ray imaging of arbitrary energies from a few hundred keV to more than MeV, is eagerly awaited along with potential new tracers which have never been used in current modalities. In this paper, we developed an ultra-compact Compton camera that weighs only 580 g. The camera consists of fine-pixelized Ce-doped Gd3Al2Ga3O12 scintillators coupled with multi-pixel photon counter arrays. We first investigated the 3-D imaging capability of our camera system for a diffuse source of a planar geometry, and then conducted small animal imaging as pre-clinical evaluation. For the first time, we successfully carried out the 3-D color imaging of a live mouse in just 2 h. By using tri-color gamma-ray fusion images, we confirmed that 131I, 85Sr, and 65Zn can be new tracers that concentrate in each target organ.

4.
Rev Sci Instrum ; 85(9): 093701, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25273730

RESUMO

We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-µm scale three-dimensional fine structures were resolved.


Assuntos
Elétrons , Imageamento Tridimensional/instrumentação , Laboratórios , Microscopia/instrumentação , Água , Animais , Rim/citologia , Camundongos , Raios X
5.
Rev Sci Instrum ; 80(11): 113301, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19947722

RESUMO

Positron emitters (11)C, (13)N, and (15)O, which can be used in positron emission tomography, were produced using deuterons accelerated by irradiation of laser pulses approximately 70 TW in peak power and approximately 30 fs in duration with a repetition of 10 Hz during a period of as long as 200 s. Every laser pulse irradiates the fresh surface of a long strip of a solid-state thin film. Deuterons contained in the film are accelerated in the relativistic plasma induced by the pulse. The deuterons are repetitively incident on solid plates, which are placed near the film, to produce positron emitters by nuclear reactions. The radioactivities of the activated plates are measured after the termination of laser irradiation. In activation of graphite, boron-nitride, and melamine plates, the products had total activities of 64, 46, and 153 Bq, respectively. Contamination in the setup was negligible even after several thousands of laser shots. Our apparatus is expected to greatly contribute to the construction of a compact PET diagnostic system in the future.


Assuntos
Deutério , Lasers , Tomografia por Emissão de Pósitrons/métodos , Compostos de Boro , Grafite , Tomografia por Emissão de Pósitrons/instrumentação , Propriedades de Superfície , Triazinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...