Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38793514

RESUMO

Co-condensation of mixed SiGe nanoclusters and impingement of SiGe nanoclusters on a Si substrate were applied using molecular dynamics (MD) simulation in this study to mimic the fast epitaxial growth of SiGe/Si heterostructures under mesoplasma chemical vapor deposition (CVD) conditions. The condensation dynamics and properties of the SiGe nanoclusters during the simulations were investigated first, and then the impingement of transient SiGe nanoclusters on both Si smooth and trench substrate surfaces under varying conditions was studied theoretically. The results show that the mixed nanoclusters as precursors demonstrate potential for enhancing epitaxial SiGe film growth at a high growth rate, owing to their loosely bound atomic structures and high mobility on the substrate surface. By varying cluster sizes and substrate temperatures, this study also reveals that smaller clusters and higher substrate temperatures contribute to faster structural ordering and smoother surface morphologies. Furthermore, the formed layers display a consistent SiGe composition, closely aligning with nominal values, and the cluster-assisted deposition method achieves the epitaxial bridging of heterostructures during cluster impingement, highlighting its additional distinctive characteristics. The implications of this work make it clear that the mechanism of fast alloyed epitaxial film growth by cluster-assisted mesoplasma CVD is critical for extending it as a versatile platform for synthesizing various epitaxial films.

2.
Phys Chem Chem Phys ; 24(12): 7442-7450, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35274111

RESUMO

Based on the co-condensation processes in the Si-Ge system upon cooling, as determined by molecular dynamics (MD) simulation, we explored the mixed cluster growth dynamics and structural properties leading to the synthesis of liquid-like SiGe nanoclusters. The results indicated that the cluster size quickly increased to large clusters by the coalescence of transient small clusters in the growth stage during co-condensation. The transient clusters at different temperatures were verified to have slightly Si-rich compositions and liquid-like structures. The coalescence of such nanoclusters at high temperatures led to spherical clusters with homogeneous intermixing. However, irregularly shaped clusters with attached mixed parts were obtained owing to incomplete coalescence at low temperatures. Ge atoms tended to move to the cluster surface to exploit their energetically favorable state during the restructuring process, leading to slightly Ge-rich components on the cluster surface. The degree of intermixing for SiGe nanoclusters was related to cluster size. Generally, small clusters appeared to be more segregated during restructuring.

3.
Sci Rep ; 11(1): 22445, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789837

RESUMO

Si nanowires/nanorods are known to enhance the cycle performance of the lithium-ion batteries. However, viable high throughput production of Si nanomaterials has not yet attained as it requires in general expensive gas source and low-rate and multiple-step approach. As one of the potential approaches, in this work, we report the fast-rate Si nanorod synthesis from low-cost powder source by the modified plasma flash evaporation and the fundamental principle of structural formation during gas co-condensation. In this process, while Si vapors are formed in high temperature plasma jet, molten copper droplets are produced separately at the low temperature region as catalysts for growth of silicon nanorods. Si rods with several micrometers long and a few hundred of nanometers in diameter were produced in a single process at rates up to 40 µm s-1. The growth of the Si nanorods from powder source is primarily characterized by the vapor-liquid-solid growth which is accelerated by the heat extraction at the growth point. The battery cells with the Si nanorods as the anode have shown that a higher capacity and better cyclability is achieved for the nanorods with higher aspect ratios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...