Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 14936, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913300

RESUMO

Loss of seed shattering has been regarded as a key step during crop domestication. Mutagenesis contributes to the development of novel crop cultivars with a desired seed-shattering habit in a relatively short period of time, but also to uncovering the genetic architecture of seed shattering. 'Minamiyutaka', a non-shattering indica rice cultivar, was developed from the easy-shattering cultivar 'Moretsu' by mutation breeding via gamma-ray irradiation. In present study, we observed significant differences in shattering habit, breaking tensile strength, and abscission zone structure between 'Moretsu' and 'Minamiyutaka'. Whole-genome mutation analysis of 'Minamiyutaka' newly identified a 13-bp deletion causing defective splicing in exon 3 of the OsSh1 gene which has previously been referred to as a candidate for controlling seed shattering. Using CRISPR/Cas9 gene editing, we demonstrated that loss-of-function mutation in OsSh1 causes non-shattering in rice. Furthermore, gene expression analysis suggests that OsSh1 may function downstream of qSH1, a known key gene involved in abscission zone differentiation. Nucleotide diversity analysis of OsSh1 in wild rice accessions and cultivars revealed that OsSh1 has been under strong selection during rice domestication, and a missense mutation might have contributed to the reduction of seed shattering from the wild progenitors to cultivated rice.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Mutação , Oryza/genética , Proteínas de Plantas/genética , Sementes/genética , Seleção Genética , Oryza/crescimento & desenvolvimento , Fenótipo , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Sequenciamento Completo do Genoma
2.
Front Plant Sci ; 11: 925, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849670

RESUMO

When cultivated rice seed fall into fields, they may overwinter and spontaneously germinate the next spring. Such germinated plants are termed "volunteer rice." Volunteer grains originating from feed rice varieties may differ in certain traits, such as quality and taste, as compared with those of rice cultivated for human consumption, which may reduce the overall quality of the final harvested grain. Many rice varieties show resistance to benzobicyclon (BBC), a beta-triketone herbicide (bTH) that inhibits 4-hydroxyphenylpyruvate dioxygenase (HPPD). Recently, the rice gene HIS1 (HPPD INHIBITOR SENSITIVE 1) conferring resistance to BBC and other bTHs was identified. In this study, to suppress the occurrence of volunteer rice infestation, we attempted to generate a BBC-sensitive rice strain via the knockout of the HIS1 gene using genome editing techniques. The production of a his1 knockout line was carried out by the start-codon substitution or stop-codon creation using CRISPR-Cas9 cytidine deaminase fusion, which is useful as a novel amino acid sequence is not generated due to the shifting of the reading frame. The mutation frequencies of independent transgenic plants were 3.6, 13.5, 13.8, and 21.2% at four gRNAs for start-codon substitution and three stop-codon creations. The his1 knockout lines were conferred with sensitivity to BBC, re-confirming by genome editing that this is indeed the gene responsible for BBC resistance/sensitivity. The his1 knockout lines also exhibited a sensitive phenotype to other bTHs, including sulcotrione, mesotrione, tembotrione, and tefuryltrione, compared with the wild-type variety 'Nipponbare.' These results demonstrate the potential of herbicide-sensitive rice produced by genome editing technology as a material to control volunteer feed rice using pre-labeled herbicides for varieties consumed by humans.

3.
Plant Physiol ; 158(3): 1208-19, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22209874

RESUMO

We identified a short-grain mutant (Short grain1 (Sg1) Dominant) via phenotypic screening of 13,000 rice (Oryza sativa) activation-tagged lines. The causative gene, SG1, encodes a protein with unknown function that is preferentially expressed in roots and developing panicles. Overexpression of SG1 in rice produced a phenotype with short grains and dwarfing reminiscent of brassinosteroid (BR)-deficient mutants, with wide, dark-green, and erect leaves. However, the endogenous BR level in the SG1 overexpressor (SG1:OX) plants was comparable to the wild type. SG1:OX plants were insensitive to brassinolide in the lamina inclination assay. Therefore, SG1 appears to decrease responses to BRs. Despite shorter organs in the SG1:OX plants, their cell size was not decreased in the SG1:OX plants. Therefore, SG1 decreases organ elongation by decreasing cell proliferation. In contrast to the SG1:OX plants, RNA interference knockdown plants that down-regulated SG1 and a related gene, SG1-LIKE PROTEIN1, had longer grains and internodes in rachis branches than in the wild type. Taken together, these results suggest that SG1 decreases responses to BRs and elongation of organs such as seeds and the internodes of rachis branches through decreased cellular proliferation.


Assuntos
Brassinosteroides/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Proliferação de Células , Tamanho Celular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Interferência de RNA , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
4.
Plant Biotechnol J ; 9(4): 466-85, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20955180

RESUMO

Approximately 20,000 of the rice-FOX Arabidopsis transgenic lines, which overexpress 13,000 rice full-length cDNAs at random in Arabidopsis, were screened for bacterial disease resistance by dip inoculation with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). The identities of the overexpressed genes were determined in 72 lines that showed consistent resistance after three independent screens. Pst DC3000 resistance was verified for 19 genes by characterizing other independent Arabidopsis lines for the same genes in the original rice-FOX hunting population or obtained by reintroducing the genes into ecotype Columbia by floral dip transformation. Thirteen lines of these 72 selections were also resistant to the fungal pathogen Colletotrichum higginsianum. Eight genes that conferred resistance to Pst DC3000 in Arabidopsis have been introduced into rice for overexpression, and transformants were evaluated for resistance to the rice bacterial pathogen, Xanthomonas oryzae pv. oryzae. One of the transgenic rice lines was highly resistant to Xanthomonas oryzae pv. oryzae. Interestingly, this line also showed remarkably high resistance to Magnaporthe grisea, the fungal pathogen causing rice blast, which is the most devastating rice disease in many countries. The causal rice gene, encoding a putative receptor-like cytoplasmic kinase, was therefore designated as BROAD-SPECTRUM RESISTANCE 1. Our results demonstrate the utility of the rice-FOX Arabidopsis lines as a tool for the identification of genes involved in plant defence and suggest the presence of a defence mechanism common between monocots and dicots.


Assuntos
Arabidopsis/genética , Arabidopsis/microbiologia , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Pseudomonas syringae/patogenicidade , Arabidopsis/enzimologia , Clonagem Molecular , Colletotrichum/patogenicidade , Regulação da Expressão Gênica de Plantas , Variação Genética , Imunidade Inata , Magnaporthe/patogenicidade , Oryza/enzimologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Transgenes , Xanthomonas/patogenicidade
5.
Plant Physiol ; 151(2): 669-80, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19648232

RESUMO

Brassinosteroids (BRs) are involved in many developmental processes and regulate many subsets of downstream genes throughout the plant kingdom. However, little is known about the BR signal transduction and response network in monocots. To identify novel BR-related genes in rice (Oryza sativa), we monitored the transcriptomic response of the brassinosteroid deficient1 (brd1) mutant, with a defective BR biosynthetic gene, to brassinolide treatment. Here, we describe a novel BR-induced rice gene BRASSINOSTEROID UPREGULATED1 (BU1), encoding a helix-loop-helix protein. Rice plants overexpressing BU1 (BU1:OX) showed enhanced bending of the lamina joint, increased grain size, and resistance to brassinazole, an inhibitor of BR biosynthesis. In contrast to BU1:OX, RNAi plants designed to repress both BU1 and its homologs displayed erect leaves. In addition, compared to the wild type, the induction of BU1 by exogenous brassinolide did not require de novo protein synthesis and it was weaker in a BR receptor mutant OsbriI (Oryza sativa brassinosteroid insensitive1, d61) and a rice G protein alpha subunit (RGA1) mutant d1. These results indicate that BU1 protein is a positive regulator of BR response: it controls bending of the lamina joint in rice and it is a novel primary response gene that participates in two BR signaling pathways through OsBRI1 and RGA1. Furthermore, expression analyses showed that BU1 is expressed in several organs including lamina joint, phloem, and epithelial cells in embryos. These results indicate that BU1 may participate in some other unknown processes modulated by BR in rice.


Assuntos
Colestanóis/metabolismo , Sequências Hélice-Alça-Hélice , Oryza/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Esteroides Heterocíclicos/metabolismo , Sequência de Aminoácidos , Brassinosteroides , Colestanóis/farmacologia , Biologia Computacional , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Modelos Biológicos , Dados de Sequência Molecular , Oryza/anatomia & histologia , Oryza/efeitos dos fármacos , Fenótipo , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Esteroides Heterocíclicos/farmacologia
6.
Plant J ; 57(5): 883-94, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18980645

RESUMO

Ectopic gene expression, or the gain-of-function approach, has the advantage that once the function of a gene is known the gene can be transferred to many different plants by transformation. We previously reported a method, called FOX hunting, that involves ectopic expression of Arabidopsis full-length cDNAs in Arabidopsis to systematically generate gain-of-function mutants. This technology is most beneficial for generating a heterologous gene resource for analysis of useful plant gene functions. As an initial model we generated more than 23,000 independent Arabidopsis transgenic lines that expressed rice fl-cDNAs (Rice FOX Arabidopsis lines). The short generation time and rapid and efficient transformation frequency of Arabidopsis enabled the functions of the rice genes to be analyzed rapidly. We screened rice FOX Arabidopsis lines for alterations in morphology, photosynthesis, element accumulation, pigment accumulation, hormone profiles, secondary metabolites, pathogen resistance, salt tolerance, UV signaling, high light tolerance, and heat stress tolerance. Some of the mutant phenotypes displayed by rice FOX Arabidopsis lines resulted from the expression of rice genes that had no homologs in Arabidopsis. This result demonstrated that rice fl-cDNAs could be used to introduce new gene functions in Arabidopsis. Furthermore, these findings showed that rice gene function could be analyzed by employing Arabidopsis as a heterologous host. This technology provides a framework for the analysis of plant gene function in a heterologous host and of plant improvement by using heterologous gene resources.


Assuntos
Perfilação da Expressão Gênica/métodos , Genes de Plantas , Oryza/genética , Arabidopsis/metabolismo , Composição de Bases , DNA Complementar/genética , DNA de Plantas/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/metabolismo , Fenótipo , Plantas Geneticamente Modificadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...