Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(19): 24816-24822, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709020

RESUMO

Flexible metal-organic frameworks (MOFs) have attracted much attention as selective gas adsorption and storage. This report describes boron doping in zeolitic imidazolate framework-7 (B-ZIF-7), which exhibits reversible phase transition during CO2 adsorption/desorption. We have successfully prepared B-ZIF-7 coordination networks using boron-bridged benzimidazolate (B(bim)4-) as organic ligands. Powder X-ray diffraction (PXRD) measurements and infrared spectroscopy revealed that B-ZIF-7 has a crystal structure similar to that of ZIF-7 while containing boron bridging in the coordination network. Since B-ZIF-7 forms a cationic coordination network, the guest anions are encapsulated within the pore. CO2 adsorption/desorption measurements at 300 K showed that B-ZIF-7(NO3), which contains nitrate ions (NO3-) as guest anions in its pores, exhibits a S-shaped CO2 adsorption/desorption isotherm, which is characteristic of gate-opening type MOFs. Compared with ZIF-7, B-ZIF-7(NO3) has superior CO2 adsorption capacity in the low-pressure and superior CO2 storage capacity. The CO2 adsorption and desorption behavior of B-ZIF-7(NO3) was analyzed by in situ temperature-controlled PXRD measurements and thermogravimetric analysis under a CO2 atmosphere, and a reversible phase transition was observed. We have also successfully prepared B-ZIF-7(Cl) and B-ZIF-7(OTf) (OTf = CF3SO3-) with different guest anions. The CO2 adsorption/desorption behaviors of B-ZIF-7(Cl) and B-ZIF-7(OTf) were significantly different from those of B-ZIF-7(NO3) and ZIF-7. B-ZIF-7(Cl) showed gate opening at a higher pressure than ZIF-7, and B-ZIF-7(OTf) did not show S-shaped CO2 adsorption isotherm and showed adsorption behavior in micropores. These results indicate that the CO2 adsorption behavior of B-ZIF-7 depends on the interaction between the guest anions and CO2 molecules or the cationic framework and the bulkiness of the guest anions. Boron doping in a coordination network with boron-bridged imidazolate ligands is a promising strategy to increase the gas adsorption capability of porous materials.

2.
Chem Commun (Camb) ; 60(31): 4170-4173, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38497761

RESUMO

Thermodynamic analysis of gate-opening carbon dioxide (CO2) adsorption behavior of metal-organic frameworks (MOFs) was investigated using differential scanning calorimetry (DSC). Unlike measurements under nitrogen atmosphere, obvious exothermic and endothermic peaks were observed in DSC curves under CO2 flow. In situ heating X-ray diffraction and thermogravimetric analyses under CO2 revealed that reversible crystal structure and weight changes occurred upon CO2 adsorption/desorption. The thermodynamic parameters of the CO2 adsorption process by MOFs were determined by DSC analysis at various CO2 partial pressures.

3.
Dent Mater J ; 43(1): 119-125, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38171743

RESUMO

Transparency to UV-Vis light and radiopacity of dental resin composites containing zirconia (ZrO2) fillers were investigated. The transparency of the resin composite containing porous ZrO2 spheres was much higher than that containing irregularly shaped ZrO2 particles. Calcination of the porous ZrO2 spheres at high temperatures led to dramatically reduced specific surface areas and pore volumes. The transparency of the resin composite containing the calcined porous ZrO2 spheres drastically decreased as the calcination temperature increased. Then, the enhanced UV-Vis transmittance of the resin composite containing porous ZrO2 spheres is attributed to the concentration and physical characteristics of the pores. The radiopacity of the resin composites containing porous ZrO2 spheres increased slightly with increasing calcination temperature. This study revealed that the internal structure of the ZrO2 fillers mainly influenced in the UV-Vis light transmittance of the resin composites.


Assuntos
Resinas Compostas , Zircônio , Porosidade , Resinas Compostas/química , Zircônio/química , Teste de Materiais , Propriedades de Superfície
4.
Chem Commun (Camb) ; 59(34): 5039-5042, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37018045

RESUMO

The quantification of electron beam damage in crystalline porous materials has been investigated under low-dose electron irradiation conditions. As a result of the systematic quantitative analysis of time-course changes in electron diffraction patterns, it was found that the unoccupied volume in the MOF crystal is a crucial factor for electron beam resistance.

5.
Dent Mater J ; 42(2): 291-299, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36624076

RESUMO

Light-curing resin cements, each comprising one of five different inorganic fillers (non-porous and porous spherical SiO2 particles, irregularly shaped glass and ZrO2 particles, and porous ZrO2 spheres), monomers, and polymerization initiators were prepared to determine the effect of filler morphology on the adhesive strength of the resin cement. The strength of adhesion to a computer-aided design/computer-aided manufacturing (CAD/CAM) resin block was investigated mechanically by measuring the tensile bond strength, flexural strength, and elastic modulus. The resin cement containing sub-micron porous ZrO2 spheres had significantly higher tensile bond strength than the other resin cements. The resin cement containing the porous ZrO2 spheres had markedly lower flexural strength and elastic modulus values than the resin cements containing SiO2 and glass fillers.


Assuntos
Colagem Dentária , Cimentos de Resina , Cimentos de Resina/química , Dióxido de Silício , Propriedades de Superfície , Teste de Materiais , Resistência à Tração
6.
ACS Nano ; 16(12): 20851-20864, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36458840

RESUMO

The application scope of metal-organic frameworks (MOFs) can be extended by rationally designing the architecture and components of MOFs, which can be achieved via a metal-containing solid templated strategy. However, this strategy suffers from low efficiency and provides only one specific MOF from one template. Herein, we present a versatile templated strategy in which organic ligands are weaved into hydrogen-bonded organic frameworks (HOFs) for the controllable and scalable synthesis of MOF nanotubes. HOF nanowires assembled from benzene-1,3,5-tricarboxylic acid and melamine via a simple sonochemical approach serve as both the template and precursor to produce MOF nanotubes with varied metal compositions. Hybrid nanotubes containing nanometal crystals and N-doped graphene prepared through a carbonization process show that the optimized NiRuIr alloy@NG nanotube exhibits excellent electrocatalytic HER activity and durability in alkaline media, outperforming most reported catalysts. The strategy proposed here demonstrates a pioneering study of combination of HOF and MOF, which shows great potential in the design of other nanosized MOFs with various architectures and compositions for potential applications.

7.
RSC Adv ; 12(35): 22902-22910, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36105993

RESUMO

The solvothermal synthesis of SnO2 porous spheres was optimized by varying the reactants, solvents, additives, reaction temperature and reaction time. The products of these trials were characterized by X-ray diffraction, electron microscopy and X-ray fluorescence spectroscopy. SnO2 possessing a highly ordered spherical structure based on the aggregation of nanometer-sized primary particles was obtained using a simple one-pot solvothermal approach. These spheres were porous with a high specific surface area of more than 200 m2 g-1. The electrical conductivity of this material equaled or exceeded that of commercially available SnO2. SnO2-based spherical porous composites including various elements were easily synthesized by incorporating additional materials in the precursor solution.

8.
Nanoscale Res Lett ; 17(1): 47, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35435525

RESUMO

Ni nanoparticle catalysts embedded in ZrO2 porous spheres and ZrO2 porous composite spheres, SiO2-ZrO2, MgO-ZrO2, and Y2O3-ZrO2, with 83-115 nm diameter and 167-269 m2/g specific surface area were prepared by a one-pot and one-step solvothermal reaction from precursor solutions consisting of Ni(NO3)2‧6H2O, Zr(OnBu)4, and acetylacetone in moist ethanol combined with either Si(OEt)4, magnesium acetylacetate, or Y(OiPr)3. The obtained Ni catalysts have high specific surface areas of 130-196 m2/g, even after high-temperature reduction by H2 at 450 °C for 2 h. They were utilized as catalysts for low-temperature dry reforming of methane (DRM) at 550 °C to suppress carbon deposition on Ni nanoparticles. The Ni catalysts embedded in SiO2-ZrO2 and Y2O3-ZrO2 demonstrated high catalytic activity and long stability in the reaction. Moreover, carbon deposition on Ni nanoparticles in the DRM reaction was effectively suppressed in when using the SiO2-ZrO2 and Y2O3-ZrO2 composites.

9.
Chem Commun (Camb) ; 58(29): 4588-4591, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35265954

RESUMO

An unusual crystal phase transition was demonstrated in a zeolitic imidazolate framework with a rigid coordination network. Differential scanning calorimetry and powder X-ray diffraction revealed that nanosizing the crystal structure was crucial for the phase transition at low temperature. The thermodynamic parameters of the phase transition were determined by calorimetry.

10.
Angew Chem Int Ed Engl ; 60(9): 4747-4755, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33215803

RESUMO

A facile anisotropic surface modification and etching strategy is presented for the synthesis of hollow structured ZIF-67 nanoframes. The strategy uses structural and compositional distinctions between each crystallographic facet of truncated rhombic dodecahedrons ZIF-67 (tZIF-67 RDs) and the moderate coordinating and etching effects of cyanuric acid (CA). The CA can anisotropically modify and protect the {110} facets from etching, causing the six {100} facets be selectively etched via an inside-out manner, and finally forming the hollow nanoframes. The surface-modified hollow tZIF-67 RDs can be facet-selectively etched by metal salts in an outside-in manner to give metal-doped tZIF-67 nanoframes. After calcination, the metal-tZIF-67 hybrids are converted into metal-Co alloy/C composite catalysts with hollow nanoframed structures. The PtCo/C catalyst with only 5.9 wt % Pt exhibits high catalytic activities and stabilities in the hydrogen evolution reaction (HER) in acidic solutions.

11.
RSC Adv ; 11(10): 5609-5617, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35423111

RESUMO

Porous ceria was obtained using a unique solvothermal reaction in acetonitrile, applying high temperature and pressure. The resulting material comprised homogeneous and monodisperse spheres and exhibited an extremely large surface area of 152 m2 g-1. From catalytic performance evaluation by vapor- and liquid-phase reactions, the synthesized porous ceria showed superior and different reaction activity compared with commercial CeO2. To examine the origin of the reaction activity of the present porous ceria, synchrotron hard X-ray photoelectron spectroscopy (HAXPES) measurements were carried out. The systematic study of HAXPES measurements revealed that the obtained porous ceria with the present solvothermal method contained a very high concentration of Ce3+. Moreover, O2-pulse adsorption analyses demonstrated a significant oxygen adsorption capacity exceeding 268 µmol-O g-1 at 400 °C owing to its high contents of Ce3+ species.

12.
Nanoscale Res Lett ; 15(1): 51, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32124088

RESUMO

A characteristic effect of a nano-concave-convex structure of a zirconia nanoparticle assembly with an inherent porous structure and huge surface area enabled us to introduce systematic surface modification by thermal treatment to smooth surface and polymer impregnation to mask the nano-concave-convex structure of the zirconia nanoparticle assembly. A polymer composite prepared from 30 wt% poly(N-isopropylacrylamide) containing 0.02 wt% zirconia nanoparticle assembly with the inherent nano-concave-convex surface structure showed the highest tensile strength in mechanical tensile testing. However, both sintered zirconia nanoparticle assembly with smooth surface and zirconia nanoparticle assemblies with polymer masked surface showed lower strength with longer elongation at break in mechanical tensile testing.

13.
RSC Adv ; 10(25): 14630-14636, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497150

RESUMO

Submicron-sized niobia (Nb2O5) porous spheres with a high specific surface area (300 m2 g-1) and nano concave-convex surfaces were synthesized via a rapid one-pot single-step alcothermal reaction. Prolonged reaction time or high reaction temperatures resulted in a morphology change of Nb2O5 from amorphous sphere to rod crystals with hexagonal crystal phase. A similar alcothermal reaction yielded TiO2-Nb2O5 composite porous spheres, whose Ti : Nb molar ratio was controlled by changing the precursor solution component ratios. A simple thermal treatment of amorphous TiO2-Nb2O5 porous spheres consisting of 1 : 2 (molar ratio) Ti : Nb at 600 °C for 2 h induced crystal phase transfer from amorphous to a monoclinic crystal phase of submicron-sized TiNb2O7 porous spheres with a specific surface area of 50 m2 g-1.

14.
Inorg Chem ; 56(19): 11546-11551, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28915029

RESUMO

The ability of a rapid-heating solvothermal process to synthesize porous nanocrystal assemblies composed of the multiple transition metals was demonstrated. The rapid heating facilitated the quick formation of nascent nanocrystals to generate homogeneous mixed transition-metal oxides. Systematic studies of the synthesis of mixed-metal oxides under various experimental conditions indicated that the present simple method is suitable to develop a wide variety of binary and ternary transition-metal systems such as Co/Mn, Ni/Mn, and Co/Mn/Fe mixed-metal oxides. The products obtained from the rapid heating process were hierarchically assembled porous nanospheres composed of sub-10 nm nanocrystals, which had an extraordinarily high surface area and nano/mesopores. Electrochemical tests revealed the high catalytic ability of the porous nanocrystal assemblies in water oxidation.

15.
Chem Commun (Camb) ; 53(50): 6704-6707, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28560362

RESUMO

Non-thermal helium atmospheric pressure plasma jet treatment is applied to the surface activation of porous TiO2 nanoparticle assemblies. Treatment conditions such as the working distance of the plasma discharge, helium gas flow rate, and treatment time are optimized for effective removal of contaminants from the assembly surface. Laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) is applied to detect trace amounts of contaminants on assembly surfaces. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations confirm that the nanoparticle assemblies retain their original perfect spherical structures as well as their ultra-fine convex-concave nano-surfaces even after the plasma jet treatment. N2 adsorption/desorption and X-ray diffraction (XRD) measurements show no significant changes in their BET specific surface areas and crystal structures, respectively. The plasma jet-treated TiO2 nanoparticle assemblies show a 3.8 fold improvement in their reaction rate constants for methylene blue degradation and a 2 fold enhancement of their photocurrents under UV irradiation when compared with untreated TiO2.

16.
Chemphyschem ; 17(23): 3916-3922, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27553850

RESUMO

Five novel surfactants were prepared by modifying the three hydroxy groups of sodium cholate with triethylene glycol chains endcapped with an amide (SC-C1 , SC-n C4 , and SC-n C5 ) or a carbamoyl group (SC-On C4 and SC-Ot C4 ). The phase behavior of aqueous mixtures of these surfactants with 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) was systematically studied by 31 P NMR spectroscopy. The surfactants endcapped with carbamate groups (SC-On C4 and SC-Ot C4 ) formed magnetically alignable bicelles over unprecedentedly wide ranges of conditions, in terms of temperature (from 21-23 to >90 °C), lipid/surfactant ratio (from 5 to 8), total lipid content (5-20 wt %), and lipid type [DMPC, 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine (DLPC), or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)]. In conjunction with appropriate phospholipids, the carbamate-endcapped surfactants afforded unique bicelles, characterized by exceptional thermal stabilities (from 0 to >90 °C), biomimetic lipid compositions (DMPC/POPC=25:75 to 50:50), and extremely large 2 H quadrupole splittings (up to 71 Hz).


Assuntos
Ácido Cólico/química , Campos Magnéticos , Tensoativos/química , Micelas , Estrutura Molecular , Tensoativos/síntese química
17.
Angew Chem Int Ed Engl ; 54(45): 13284-8, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26373898

RESUMO

In situ polymerization of a bicellar mixture composed of a phospholipid and polymerizable surfactants afforded unprecedented stable bicelles. The polymerized composite showed an aligned phase over a wide thermal range (25 to >90 °C) with excellent (2)H quadrupole splitting of the solvent signal, thus implying versatility as an alignment medium for NMR studies. Crosslinking of the surfactants also brought favorable effects on the kinetic stability and alignment morphology of the bicelles. This system could thus offer a new class of scaffolds for biomembrane models.


Assuntos
Fosfolipídeos/química , Tensoativos/química , Temperatura , Cinética , Espectroscopia de Ressonância Magnética
18.
ACS Nano ; 8(5): 4640-9, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24738828

RESUMO

A general method to prepare polymer gels containing anisotropically oriented graphene oxide (GO) or reduced graphene oxide (RGO) was developed, by using the magnetically induced orientation of GO. Under a magnetic field, an aqueous dispersion of GO was gelated by in situ cross-linking polymerization of an acryl monomer and a cross-linker. In the resultant hydrogel, the orientation of GO was retained even in the absence of the magnetic field, because the gel network trapped GO via noncovalent interactions and efficiently suppressed the structural relaxation of GO. The locked structure enabled quantitative investigation on the magnetic orientation of GO using 2D small-angle X-ray scattering, which revealed that GO nanosheets orient parallel to the magnetic field with an order parameter of up to 0.80. Systematic studies with varying gelation conditions indicate that the present method can afford a wide range of GO-hybridized anisotropic materials, in terms of GO alignment direction, sample shape, and GO concentration. Also by virtue of the locked structure, the orientation of GO in the hydrogel was well preserved throughout the in situ chemical reduction of GO, yielding an RGO-hybridized anisotropic hydrogel, as well as the conversion of the hydrogel into organo- and ionogels through the replacement of the internal water with solvents. As a preliminary demonstration of the present method for practical application, a polymer-composite film containing RGO oriented vertical to the film surface was prepared, and its anisotropically enhanced electroconductivity along the orientation direction of RGO was confirmed by the flash-photolysis time-resolved microwave conductivity measurement.

19.
J Am Chem Soc ; 135(41): 15650-5, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24050260

RESUMO

ABA-triblock copolyethers 1a-1c as linear polymeric binders, in combination with clay nanosheets (CNSs), afford high-water-content moldable supramolecular hydrogels with excellent mechanical properties by constructing a well-developed crosslinked network in water. The linear binders carry in their terminal A blocks guanidinium ion (Gu(+)) pendants for adhesion to the CNS surface, while their central B block comprises poly(ethylene oxide) (PEO) that serves as a flexible linker for adhered CNSs. Although previously reported dendritic binder 2 requires multistep synthesis and purification, the linear binders can be obtained in sizable quantities from readily available starting materials by controlled polymerization. Together with dendritic reference 2, the modular nature of compounds 1a-1c with different numbers of Gu(+) pendants and PEO linker lengths allowed for investigating how their structural parameters affect the gel network formation and hydrogel properties. The newly obtained hydrogels are mechanically as tough as that with 2, although the hydrogelation takes place more slowly. Irrespective of which binder is used, the supramolecular gel network has a shape memory feature upon drying followed by rewetting, and the gelling water can be freely replaced with ionic liquids and organic fluids, affording novel clay-reinforced iono- and organogels, respectively.

20.
Chem Commun (Camb) ; (33): 4997-9, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19668828

RESUMO

A donor-acceptor nanohybrid composed of single-walled carbon nanotubes (SWNTs) and coenzyme Q(10) (CoQ(10)) undergoes efficient photoinduced electron transfer from SWNT to CoQ(10) to produce the charge-separated state as indicated by femtosecond laser flash photolysis and ESR measurements.


Assuntos
Nanotubos de Carbono/química , Ubiquinona/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Lasers , Nanotubos de Carbono/ultraestrutura , Oxirredução , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...