Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 336: 125306, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34034012

RESUMO

A submerged anaerobic membrane bioreactor (SAnMBR) was used in the treatment of real municipal wastewater at operation temperatures ranging from 15 °C to 25 °C and hydraulic retention time (HRT) of 6 h. The treatment process was evaluated in terms of organic removal efficiency, biogas production, sludge growth and membrane filtration. During long-term operation, the SAnMBR achieved chemical oxygen demand removal efficiencies of about 90% with a low sludge yield (0.12-0.19 g-VSS/g-CODrem) at 20-25 °C. Approximately 1.82-2.27 kWh/d of electric energy was generated during the wastewater treatment process at 20-25 °C, 0.67 kWh/d was generated at 15 °C. The microbial community analysis results showed that microbial community was dominated by aceticlastic methanogens, coupled by hydrogenotrophic methanogens and a very small quantity of methylotrophic methanogens. It was also shown that the stabilization of the microbial community could be attributed to the carbohydrate-protein degrading bacteria and the carbohydrate degrading bacteria.


Assuntos
Microbiota , Águas Residuárias , Anaerobiose , Biocombustíveis , Reatores Biológicos , Membranas Artificiais , Esgotos , Temperatura , Eliminação de Resíduos Líquidos
2.
Sci Total Environ ; 775: 145799, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33621884

RESUMO

A 20 L hollow-fiber submerged anaerobic membrane bioreactor (SAnMBR) was used to treat real domestic wastewater at 25 °C with hydraulic retention times (HRTs) ranging from 4 to 12 h. The process performance was evaluated by organic removal efficiency, biogas production, sludge yield, and filtration behaviors during one-year's operation. For HRTs ranging between 6 and 12 h, the AnMBR showed good organic removal efficiency with chemical oxygen demand (COD) and biochemical oxygen demand (BOD) removal efficiencies of about 89% and 93%, respectively. The biogas yield was 0.26 L-gas/g-CODfed, with approximately 80% methane content, and the sludge yield was 0.07-0.11 g-VSS/g-CODrem. While at an HRT of 4 h, with the higher wastewater treatment capacity and organic loading rate (OLR), the biogas production was lower (0.17 L-gas/g-CODfed), and the sludge production was higher (0.22 g-VSS/g-CODrem). The organic removal performance (COD 84% and BOD 89%) at HRT of 4 h was acceptable due to the effective separation effect of the membrane filtration process. According to COD balance analysis, the low biogas yield and high sludge yield at HRT of 4 h were due to insufficient biodegradation under an OLR of 2.05 g-COD/L-reactor/d. Theoretical calculations based on Henry's law indicate that the ideal methane content in the biogas should be 82-85% when the operational temperature was 25 °C. To achieve a high flux and sustainable AnMBR operation, the impact of mixed liquor suspended solid (MLSS) and gas sparging velocity (GSV) on the filtration performance was analyzed. The critical flux increased with increase in the GSV from 24.2 to 174.3 m/h, but decreased with increase in the MLSS concentration from 8.2 to 20.2 g/L. Therefore, decreasing fouling rate to 0.8-1.2 kPa/d by efficiently controlling GSV and MLSS, sustainable operation could be achieved at a flux of 0.34 m/d.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Anaerobiose , Reatores Biológicos , Membranas Artificiais , Metano , Esgotos , Temperatura , Águas Residuárias
3.
Sci Total Environ ; 745: 140903, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32717601

RESUMO

Pore size is one of the most important properties in the successful operation of membrane-based bioprocesses for the treatment of municipal wastewater. The characteristics of two anaerobic membrane bioreactors (AnMBRs), one with a hollow fiber membrane of 0.4 µm pore size (AnMBR1), and the other with a membrane of 0.05 µm pore size (AnMBR2) were investigated for the treatment of real municipal wastewater at room temperature (25 °C) under varied hydraulic retention times (HRTs). Process performance was evaluated in terms of organic removal efficiency, biogas production and membrane filtration behaviours during a long-term continuous operation. Both AnMBRs showed good organic removal performance with COD and BOD removal efficiencies of around 89% and 93%, respectively. High energy recovery potential was achieved, with the biogas yield ranging between 0.20 and 0.26 L-gas/g-CODrem and a methane content of approximately 75%. The differences in the membrane filtration behaviours in the two AnMBRs included different permeate flux and total filtration resistance (Rt). In the AnMBR with a 0.4 µm pore size membrane, an average Rt of 1.08 × 10^12 m-1 was obtained even when the permeate flux was a high 0.274 m/day, while a higher average Rt of 1.51 × 10^12 m-1 was observed in the AnMBR with 0.05 µm pore size membrane even when the flux was a low 0.148 m/day. The off-line membrane cleaning strategy used for AnMBR1 indicated that the membrane restoration efficiency was 90.2%.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Membranas Artificiais , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...