Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 474: 116611, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37385477

RESUMO

The placenta is a critical organ for fetal development and a healthy pregnancy, and has multifaceted functions (e.g., substance exchange and hormone secretion). Syncytialization of trophoblasts is important for maintaining placental functions. Epilepsy is one of the most common neurological conditions worldwide. Therefore, this study aimed to reveal the influence of antiepileptic drugs, including valproic acid (VPA), carbamazepine, lamotrigine, gabapentin, levetiracetam, topiramate, lacosamide, and clobazam, at clinically relevant concentrations on syncytialization using in vitro models of trophoblasts. To induce differentiation into syncytiotrophoblast-like cells, BeWo cells were treated with forskolin. Exposure to VPA was found to dose-dependently influence syncytialization-associated genes (ERVW-1, ERVFRD-1, GJA1, CGB, CSH, SLC1A5, and ABCC4) in differentiated BeWo cells. Herein, the biomarkers between differentiated BeWo cells and the human trophoblast stem model (TSCT) were compared. In particular, MFSD2A levels were low in BeWo cells but abundant in TSCT cells. VPA exposure affected the expression of ERVW-1, ERVFRD-1, GJA1, CSH, MFSD2A, and ABCC4 in differentiated cells (ST-TSCT). Furthermore, VPA exposure attenuated BeWo and TSCT cell fusion. Finally, the relationships between neonatal/placental parameters and the expression of syncytialization markers in human term placentas were analyzed. MFSD2A expression was positively correlated with neonatal body weight, head circumference, chest circumference, and placental weight. Our findings have important implications for better understanding the mechanisms of toxicity of antiepileptic drugs and predicting the risks to placental and fetal development.


Assuntos
Placenta , Trofoblastos , Recém-Nascido , Humanos , Gravidez , Feminino , Placenta/metabolismo , Ácido Valproico/toxicidade , Anticonvulsivantes/farmacologia , Linhagem Celular , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/farmacologia , Sistema ASC de Transporte de Aminoácidos/metabolismo
2.
Xenobiotica ; 52(4): 405-412, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35642749

RESUMO

Previous studies have indicated that the expression levels of several transporters are altered during placental trophoblast differentiation. However, changes in the transport activities of therapeutic agents during differentiation must be comprehensively characterised. Antiepileptic drugs, including gabapentin (GBP), lamotrigine (LTG), topiramate, and levetiracetam, are increasingly prescribed during pregnancy. The objective of this study was to elucidate differences in the uptake of antiepileptic drugs during the differentiation process.Human placental choriocarcinoma BeWo cells were used as trophoblast models. For differentiation into syncytiotrophoblast-like cells, cells were treated with forskolin.The uptake of GBP and LTG was lower in differentiated BeWo cells than in undifferentiated cells. In particular, the maximum uptake rate of GBP transport was decreased in differentiated BeWo cells. Furthermore, GBP transport was trans-stimulated by the amino acids His and Met. We investigated the profiles of amino acids in undifferentiated and differentiated BeWo cells. Supplementation with His and Met, which demonstrated trans-stimulatory effects on GBP uptake, restored GBP uptake in differentiated cells. The findings of this study suggest that drug transport in BeWo cells can be altered before and after differentiation, and that the altered GBP uptake could be mediated by the intracellular amino acid status.


Assuntos
Anticonvulsivantes , Placenta , Aminas/metabolismo , Aminoácidos/metabolismo , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacologia , Colforsina/metabolismo , Colforsina/farmacologia , Feminino , Gabapentina/metabolismo , Gabapentina/farmacologia , Humanos , Placenta/metabolismo , Gravidez , Trofoblastos/metabolismo
3.
Drug Metab Pharmacokinet ; 40: 100409, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34293696

RESUMO

Valproate (VPA), an antiepileptic drug, is known to inhibit histone deacetylases (HDACs). Exposure to VPA during pregnancy increases several fetal risks. The maintenance of folate level during pregnancy is essential for adequate fetal development, and the placenta plays a critical role in supplying nutrients to the fetus. The aim of this study was to elucidate the effects of VPA on the gene expression of folate carriers and metabolizing enzymes in the rat placenta at both mid and late gestation periods. Pregnant rats were orally administered VPA on a single day or 4 days (repeated administration). Gene expression of folate carriers (Folr1, Slc19a1, Slc46a1) and metabolizing enzymes (Cth, Mtr, Mtrr, Mthfr, Dhfr) was assessed in the placenta on gestational day (GD) 13 or GD20. In the control rats, the expression of Folr1, Slc46a1, Cth, and Mthfr tended to be upregulated, whereas that of Mtrr and Dhfr was downregulated during gestation; the expression of Slc19a1 and Mtr did not change. Repeated VPA administration reduced the placental expression of Folr1and Mtr on GD20 and increased the expression of Dhfr on GD13 compared with the control. These findings indicate that administration of VPA alters the placental gene expression of folate carriers and metabolism-related enzymes.


Assuntos
Placenta , Ácido Valproico , Animais , Anticonvulsivantes/uso terapêutico , Feminino , Ácido Fólico , Inibidores de Histona Desacetilases/farmacologia , Proteínas de Membrana Transportadoras , Antígenos de Histocompatibilidade Menor , Gravidez , Transportador de Folato Acoplado a Próton/genética , Ratos , Proteína Carregadora de Folato Reduzido/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...