Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Muscle Nerve ; 57(3): 506-510, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28885698

RESUMO

INTRODUCTION: Evaluation of the nerve fascicular structure can be useful in diagnosing nerve damage, but it is a very challenging task with 3T MRI because of limited resolution. In this pilot study, we present the feasibility of high-resolution 7T MRI for examining the nerve fascicular structure. METHODS: A 3-dimensional (3D) gradient-spoiled sequence was used for imaging peripheral nerves in extremities. Images acquired with different in-plane resolutions (0.42 × 0.42 mm vs. 0.12 × 0.12 mm), and different main field strengths (7T vs. 3T) were compared. RESULTS: The individual nerve fascicles were identified at 0.12 × 0.12 mm resolution in both field strengths but not at 0.42 × 0.42 mm resolution. The fascicular structure was more sharply depicted in 7T images than in 3T images. DISCUSSION: High-resolution 3D imaging with 7T MRI demonstrated feasibility for imaging nerve fascicular structures. Muscle Nerve 57: 506-510, 2018.


Assuntos
Autoanticorpos/sangue , Colágeno Tipo XIII/imunologia , Miastenia Gravis/imunologia , Humanos , Miastenia Gravis/sangue , Projetos Piloto
2.
Hum Mol Genet ; 26(11): 2076-2090, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369367

RESUMO

Both transmembrane and extracellular cues, one of which is collagen XIII, regulate the formation and function of the neuromuscular synapse, and their absence results in myasthenia. We show that the phenotypical changes in collagen XIII knock-out mice are milder than symptoms in human patients, but the Col13a1-/- mice recapitulate major muscle findings of congenital myasthenic syndrome type 19 and serve as a disease model. In the lack of collagen XIII neuromuscular synapses do not reach full size, alignment, complexity and function resulting in reduced muscle strength. Collagen XIII is particularly important for the preterminal integrity, and when absent, destabilization of the motor nerves results in muscle regeneration and in atrophy especially in the case of slow muscle fibers. Collagen XIII was found to affect synaptic integrity through binding the ColQ tail of acetylcholine esterase. Although collagen XIII is a muscle-bound transmembrane molecule, it also undergoes ectodomain shedding to become a synaptic basal lamina component. We investigated the two forms' roles by novel Col13a1tm/tm mice in which ectodomain shedding is impaired. While postsynaptic maturation, terminal branching and neurotransmission was exaggerated in the Col13a1tm/tm mice, the transmembrane form's presence sufficed to prevent defects in transsynaptic adhesion, Schwann cell invagination/retraction, vesicle accumulation and acetylcholine receptor clustering and acetylcholinesterase dispersion seen in the Col13a1-/- mice, pointing to the transmembrane form as the major conductor of collagen XIII effects. Altogether, collagen XIII secures postsynaptic, synaptic and presynaptic integrity, and it is required for gaining and maintaining normal size, complexity and functional capacity of the neuromuscular synapse.


Assuntos
Colágeno Tipo XIII/genética , Colágeno Tipo XIII/metabolismo , Sinapses/metabolismo , Acetilcolinesterase/metabolismo , Animais , Membrana Basal/metabolismo , Adesão Celular/fisiologia , Colágeno/metabolismo , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/metabolismo , Transmissão Sináptica
3.
J Neurosci ; 30(37): 12230-41, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20844119

RESUMO

Formation, maturation, stabilization, and functional efficacy of the neuromuscular junction (NMJ) are orchestrated by transsynaptic and autocrine signals embedded within the synaptic cleft. Here, we demonstrate that collagen XIII, a nonfibrillar transmembrane collagen, is another such signal. We show that collagen XIII is expressed by muscle and its ectodomain can be proteolytically shed into the extracellular matrix. The collagen XIII protein was found present in the postsynaptic membrane and synaptic basement membrane. To identify a role for collagen XIII at the NMJ, mice were generated lacking this collagen. Morphological and ultrastructural analysis of the NMJ revealed incomplete adhesion of presynaptic and postsynaptic specializations in collagen XIII-deficient mice of both genders. Strikingly, Schwann cells erroneously enwrapped nerve terminals and invaginated into the synaptic cleft, resulting in a decreased contact surface for neurotransmission. Consistent with morphological findings, electrophysiological studies indicated both postsynaptic and presynaptic defects in Col13a1(-/-) mice, such as decreased amplitude of postsynaptic potentials, diminished probabilities of spontaneous release and reduced readily releasable neurotransmitter pool. To identify the role of collagen XIII at the NMJ, shed ectodomain of collagen XIII was applied to cultured myotubes, and it was found to advance acetylcholine receptor (AChR) cluster maturation. Together with the delay in AChR cluster development observed in collagen XIII-deficient mutants in vivo, these results suggest that collagen XIII plays an autocrine role in postsynaptic maturation of the NMJ. Altogether, the results presented here reveal that collagen XIII is a novel muscle-derived cue necessary for the maturation and function of the vertebrate NMJ.


Assuntos
Colágeno Tipo XIII/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/inervação , Junção Neuromuscular/crescimento & desenvolvimento , Animais , Comunicação Autócrina/genética , Comunicação Autócrina/fisiologia , Linhagem Celular , Células Cultivadas , Colágeno Tipo XIII/deficiência , Colágeno Tipo XIII/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes Neurológicos , Músculo Esquelético/fisiologia , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo , Membranas Sinápticas/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...