Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Med Biol ; 18(3): 247-255, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31312103

RESUMO

BACKGROUND: Germ cells represent one of the typical cell types that moves over a long period of time and large distance within the animal body. To continue its life cycle, germ cells must migrate to spatially distinct locations for proper development. Defects in such migration processes can result in infertility. Thus, for more than a century, the principles of germ cell migration have been a focus of interest in the field of reproductive biology. METHODS: Based on published reports (mainly from rodents), investigations of germ cell migration before releasing from the body, including primordial germ cells (PGCs), gonocytes, spermatogonia, and immature spermatozoon, were summarized. MAIN FINDINGS: Germ cells migrate with various patterns, with each migration step regulated by distinct mechanisms. During development, PGCs actively and passively migrate from the extraembryonic region toward genital ridges through the hindgut epithelium. After sex determination, male germline cells migrate heterogeneously in a developmental stage-dependent manner within the testis. CONCLUSION: During migration, there are multiple gates that disallow germ cells from re-entering the proper developmental pathway after wandering off the original migration path. The presence of gates may ensure the robustness of germ cell development during development, growth, and homeostasis.

2.
J Biol Chem ; 280(7): 5527-32, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15598654

RESUMO

Five amino acid residues responsible for extreme stability have been identified in cytochrome c(552) (HT c(552)) from a thermophilic bacterium, Hydrogenobacter thermophilus. The five residues, which are spatially distributed in three regions of HT c(552), were replaced with the corresponding residues in the homologous but less stable cytochrome c(551) (PA c(551)) from Pseudomonas aeruginosa. The quintuple HT c(552) variant (A7F/M13V/Y34F/Y43E/I78V) showed the same stability against guanidine hydrochloride denaturation as that of PA c(551), suggesting that the five residues in HT c(552) necessarily and sufficiently contribute to the overall stability. In the three HT c(552) variants carrying mutations in each of the three regions, the Y34F/Y43E mutations resulted in the greatest destabilization, by -13.3 kJ mol(-1), followed by A7F/M13V (-3.3 kJ mol(-1)) and then I78V (-1.5 kJ mol(-1)). The order of destabilization in HT c(552) was the same as that of stabilization in PA c(551) with reverse mutations such as F34Y/E43Y, F7A/V13M, and V78I (13.4, 10.3, and 0.3 kJ mol(-1), respectively). The results of guanidine hydrochloride denaturation were consistent with those of thermal denaturation for the same variants. The present study established a method for reciprocal mutation analysis. The effects of side-chain contacts were experimentally evaluated by swapping the residues between the two homologous proteins that differ in stability. A comparative study of the two proteins was a useful tool for assessing the amino acid contribution to the overall stability.


Assuntos
Aminoácidos/metabolismo , Bactérias/enzimologia , Grupo dos Citocromos c/química , Grupo dos Citocromos c/metabolismo , Aminoácidos/genética , Bactérias/genética , Dicroísmo Circular , Grupo dos Citocromos c/genética , Eletroquímica , Estabilidade Enzimática , Escherichia coli/citologia , Escherichia coli/metabolismo , Guanidina/farmacologia , Espectroscopia de Ressonância Magnética , Mutação/genética , Periplasma/metabolismo , Conformação Proteica/efeitos dos fármacos , Desnaturação Proteica/efeitos dos fármacos , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...