Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(4-2): 045108, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755946

RESUMO

Even when the partial differential equation underlying a physical process can be evolved forward in time, the retrospective (backward in time) inverse problem often has its own challenges and applications. Direct adjoint looping (DAL) is the defacto approach for solving retrospective inverse problems, but it has not been applied to deterministic retrospective Navier-Stokes inverse problems in 2D or 3D. In this paper, we demonstrate that DAL is ill-suited for solving retrospective 2D Navier-Stokes inverse problems. Alongside DAL, we study two other iterative methods: simple backward integration (SBI) and the quasireversible method (QRM). As far as we know, our iterative SBI approach is novel, while iterative QRM has previously been used. Using these three iterative methods, we solve two retrospective inverse problems: 1D Korteweg-de Vries-Burgers (decaying nonlinear wave) and 2D Navier-Stokes (unstratified Kelvin-Helmholtz vortex). In both cases, SBI and QRM reproduce the target final states more accurately and in fewer iterations than DAL. We attribute this performance gap to additional terms present in SBI and QRM's respective backward integrations which are absent in DAL.

2.
Nature ; 629(8013): 769-772, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778233

RESUMO

The magnetic dynamo cycle of the Sun features a distinct pattern: a propagating region of sunspot emergence appears around 30° latitude and vanishes near the equator every 11 years (ref. 1). Moreover, longitudinal flows called torsional oscillations closely shadow sunspot migration, undoubtedly sharing a common cause2. Contrary to theories suggesting deep origins of these phenomena, helioseismology pinpoints low-latitude torsional oscillations to the outer 5-10% of the Sun, the near-surface shear layer3,4. Within this zone, inwardly increasing differential rotation coupled with a poloidal magnetic field strongly implicates the magneto-rotational instability5,6, prominent in accretion-disk theory and observed in laboratory experiments7. Together, these two facts prompt the general question: whether the solar dynamo is possibly a near-surface instability. Here we report strong affirmative evidence in stark contrast to traditional models8 focusing on the deeper tachocline. Simple analytic estimates show that the near-surface magneto-rotational instability better explains the spatiotemporal scales of the torsional oscillations and inferred subsurface magnetic field amplitudes9. State-of-the-art numerical simulations corroborate these estimates and reproduce hemispherical magnetic current helicity laws10. The dynamo resulting from a well-understood near-surface phenomenon improves prospects for accurate predictions of full magnetic cycles and space weather, affecting the electromagnetic infrastructure of Earth.

3.
Nat Astron ; 7(10): 1228-1234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859938

RESUMO

Massive stars die in catastrophic explosions that seed the interstellar medium with heavy elements and produce neutron stars and black holes. Predictions of the explosion's character and the remnant mass depend on models of the star's evolutionary history. Models of massive star interiors can be empirically constrained by asteroseismic observations of gravity wave oscillations. Recent photometric observations reveal a ubiquitous red noise signal on massive main sequence stars; a hypothesized source of this noise is gravity waves driven by core convection. We present three-dimensional simulations of massive star convection extending from the star's centre to near its surface, with realistic stellar luminosities. Using these simulations, we predict the photometric variability due to convectively driven gravity waves at the surfaces of massive stars, and find that gravity waves produce photometric variability of a lower amplitude and lower characteristic frequency than the observed red noise. We infer that the photometric signal of gravity waves excited by core convection is below the noise limit of current observations, and thus the red noise must be generated by an alternative process.

4.
Philos Trans A Math Phys Eng Sci ; 381(2243): 20220122, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36709784

RESUMO

Taylor-Couette flow is well known to admit a spiral turbulence state in which laminar and turbulent patches coexist around the cylinder. This flow state is quite complex, with delicate internal structure, and it can be traced into certain regimes of linear stability. This behaviour is believed to be connected to the non-normality of the linear operator, which is itself a function of the control parameters. Using spiral turbulence in both linearly stable and unstable regimes, we investigate the effectiveness of the generalized quasi-linear approximation (GQL), an extension of quasi-linear theory designed to capture the essential aspects of turbulent flows. We find that GQL performs much better in the supercritical regime than the subcritical. By including only a small number of modes in the nonlinear interactions, GQL simulations maintain a turbulent-like state when in the supercritical regime. However, a much larger number is required to avoid returning to the laminar state when in the subcritical regime. This article is part of the theme issue 'Taylor-Couette and related flows on the centennial of Taylor's seminal Philosophical Transactions paper (part 1)'.

5.
Proc Math Phys Eng Sci ; 476(2233): 20190622, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32082064

RESUMO

The magnetorotational instability (MRI) occurs when a weak magnetic field destabilizes a rotating, electrically conducting fluid with inwardly increasing angular velocity. The MRI is essential to astrophysical disc theory where the shear is typically Keplerian. Internal shear layers in stars may also be MRI-unstable, and they take a wide range of profiles, including near-critical. We show that the fastest growing modes of an ideal magnetofluid are three-dimensional provided the shear rate, S, is near the two-dimensional onset value, S c . For a Keplerian shear, three-dimensional modes are unstable above S ≈ 0.10S c , and dominate the two-dimensional modes until S ≈ 2.05S c . These three-dimensional modes dominate for shear profiles relevant to stars and at magnetic Prandtl numbers relevant to liquid-metal laboratory experiments. Significant numbers of rapidly growing three-dimensional modes remainy well past 2.05S c . These finding are significant in three ways. First, weakly nonlinear theory suggests that the MRI saturates by pushing the shear rate to its critical value. This can happen for systems, such as stars and laboratory experiments, that can rearrange their angular velocity profiles. Second, the non-normal character and large transient growth of MRI modes should be important whenever three-dimensionality exists. Finally, three-dimensional growth suggests direct dynamo action driven from the linear instability.

6.
Phys Rev Lett ; 123(25): 258101, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31922766

RESUMO

Bacterial biofilms represent a major form of microbial life on Earth and serve as a model active nematic system, in which activity results from growth of the rod-shaped bacterial cells. In their natural environments, ranging from human organs to industrial pipelines, biofilms have evolved to grow robustly under significant fluid shear. Despite intense practical and theoretical interest, it is unclear how strong fluid flow alters the local and global architectures of biofilms. Here, we combine highly time-resolved single-cell live imaging with 3D multiscale modeling to investigate the mechanisms by which flow affects the dynamics of all individual cells in growing biofilms. Our experiments and cell-based simulations reveal three quantitatively different growth phases in strong external flow and the transitions between them. In the initial stages of biofilm development, flow induces a downstream gradient in cell orientation, causing asymmetrical dropletlike biofilm shapes. In the later developmental stages, when the majority of cells are sheltered from the flow by the surrounding extracellular matrix, buckling-induced cell verticalization in the biofilm core restores radially symmetric biofilm growth, in agreement with predictions of a 3D continuum model.


Assuntos
Biofilmes/crescimento & desenvolvimento , Modelos Biológicos , Vibrio cholerae/fisiologia , Microfluídica
7.
Artigo em Inglês | MEDLINE | ID: mdl-26172801

RESUMO

Water's density maximum at 4°C makes it well suited to study internal gravity wave excitation by convection: an increasing temperature profile is unstable to convection below 4°C, but stably stratified above 4°C. We present numerical simulations of a waterlike fluid near its density maximum in a two-dimensional domain. We successfully model the damping of waves in the simulations using linear theory, provided we do not take the weak damping limit typically used in the literature. To isolate the physical mechanism exciting internal waves, we use the spectral code dedalus to run several simplified model simulations of our more detailed simulation. We use data from the full simulation as source terms in two simplified models of internal-wave excitation by convection: bulk excitation by convective Reynolds stresses, and interface forcing via the mechanical oscillator effect. We find excellent agreement between the waves generated in the full simulation and the simplified simulation implementing the bulk excitation mechanism. The interface forcing simulations overexcite high-frequency waves because they assume the excitation is by the "impulsive" penetration of plumes, which spreads energy to high frequencies. However, we find that the real excitation is instead by the "sweeping" motion of plumes parallel to the interface. Our results imply that the bulk excitation mechanism is a very accurate heuristic for internal-wave generation by convection.

8.
Nature ; 448(7157): 1022-5, 2007 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-17728751

RESUMO

During the initial stages of planet formation in circumstellar gas disks, dust grains collide and build up larger and larger bodies. How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem: boulders are expected to stick together poorly, and to spiral into the protostar in a few hundred orbits owing to a 'headwind' from the slower rotating gas. Gravitational collapse of the solid component has been suggested to overcome this barrier. But even low levels of turbulence will inhibit sedimentation of solids to a sufficiently dense midplane layer, and turbulence must be present to explain observed gas accretion in protostellar disks. Here we report that boulders can undergo efficient gravitational collapse in locally overdense regions in the midplane of the disk. The boulders concentrate initially in transient high pressure regions in the turbulent gas, and these concentrations are augmented a further order of magnitude by a streaming instability driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar disks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...