Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366096

RESUMO

Inertial measurement units (IMUs) offer an attractive way to study human lower-limb kinematics without traditional laboratory constraints. We present an error-state Kalman filter method to estimate 3D joint angles, joint angle ranges of motion, stride length, and step width using data from an array of seven body-worn IMUs. Importantly, this paper contributes a novel joint axis measurement correction that reduces joint angle drift errors without assumptions of strict hinge-like joint behaviors of the hip and knee. We evaluate the method compared to two optical motion capture methods on twenty human subjects performing six different types of walking gait consisting of forward walking (at three speeds), backward walking, and lateral walking (left and right). For all gaits, RMS differences in joint angle estimates generally remain below 5 degrees for all three ankle joint angles and for flexion/extension and abduction/adduction of the hips and knees when compared to estimates from reflective markers on the IMUs. Additionally, mean RMS differences in estimated stride length and step width remain below 0.13 m for all gait types, except stride length during slow walking. This study confirms the method's potential for non-laboratory based gait analysis, motivating further evaluation with IMU-only measurements and pathological gaits.


Assuntos
Marcha , Caminhada , Humanos , Fenômenos Biomecânicos , Extremidade Inferior , Articulação do Tornozelo , Articulação do Joelho
2.
Sensors (Basel) ; 21(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34300399

RESUMO

Loss-of-balance (LOB) events, such as trips and slips, are frequent among community-dwelling older adults and are an indicator of increased fall risk. In a preliminary study, eight community-dwelling older adults with a history of falls were asked to perform everyday tasks in the real world while donning a set of three inertial measurement sensors (IMUs) and report LOB events via a voice-recording device. Over 290 h of real-world kinematic data were collected and used to build and evaluate classification models to detect the occurrence of LOB events. Spatiotemporal gait metrics were calculated, and time stamps for when LOB events occurred were identified. Using these data and machine learning approaches, we built classifiers to detect LOB events. Through a leave-one-participant-out validation scheme, performance was assessed in terms of the area under the receiver operating characteristic curve (AUROC) and the area under the precision recall curve (AUPR). The best model achieved an AUROC ≥0.87 for every held-out participant and an AUPR 4-20 times the incidence rate of LOB events. Such models could be used to filter large datasets prior to manual classification by a trained healthcare provider. In this context, the models filtered out at least 65.7% of the data, while detecting ≥87.0% of events on average. Based on the demonstrated discriminative ability to separate LOBs and normal walking segments, such models could be applied retrospectively to track the occurrence of LOBs over an extended period of time.


Assuntos
Acidentes por Quedas , Dispositivos Eletrônicos Vestíveis , Acidentes por Quedas/prevenção & controle , Idoso , Marcha , Humanos , Estudos Retrospectivos , Caminhada
3.
PLoS One ; 16(4): e0249577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33878142

RESUMO

Human lower-limb kinematic measurements are critical for many applications including gait analysis, enhancing athletic performance, reducing or monitoring injury risk, augmenting warfighter performance, and monitoring elderly fall risk, among others. We present a new method to estimate lower-limb kinematics using an error-state Kalman filter that utilizes an array of body-worn inertial measurement units (IMUs) and four kinematic constraints. We evaluate the method on a simplified 3-body model of the lower limbs (pelvis and two legs) during walking using data from simulation and experiment. Evaluation on this 3-body model permits direct evaluation of the ErKF method without several confounding error sources from human subjects (e.g., soft tissue artefacts and determination of anatomical frames). RMS differences for the three estimated hip joint angles all remain below 0.2 degrees compared to simulation and 1.4 degrees compared to experimental optical motion capture (MOCAP). RMS differences for stride length and step width remain within 1% and 4%, respectively compared to simulation and 7% and 5%, respectively compared to experiment (MOCAP). The results are particularly important because they foretell future success in advancing this approach to more complex models for human movement. In particular, our future work aims to extend this approach to a 7-body model of the human lower limbs composed of the pelvis, thighs, shanks, and feet.


Assuntos
Marcha/fisiologia , Extremidade Inferior/fisiologia , Modelos Biológicos , Movimento , Caminhada , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Amplitude de Movimento Articular
4.
Appl Ergon ; 94: 103382, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33751931

RESUMO

A single sacrum mounted inertial measurement unit (IMU) was employed to analyze warfighter performance on a bounding rush (prone-sprinting-prone) task. Thirty-nine participants (23M/16F) performed a bounding rush task consisting of four bounding rush cycles. The sacrum mounted IMU recorded angular velocity and acceleration data were used to provide estimates of sacral velocity and position. Individual rush cycles were parsed into three principal movement phases; namely, the get up, sprint, and get down phases. The timing of each phase was analyzed, averaged for each participant, and compared to the overall rush cycle time using regression analysis. A cluster analysis further reveals differences between high and low performers. Get down time was most predictive of bounding rush performance (R2 = 0.75) followed by get up time (R2 = 0.58) and sprint time (R2 = 0.40). Comparing high and low performers, the get down time exhibited nearly twice the effect on mean rush cycle time compared to get up time (effect size of -2.61 to -1.46, respectively). Overall, this IMU-based method reveals key features of the bounding rush that govern performance. Consequently, this objective method may support future training regimens and performance standards for military recruits, and parallel applications for athletes.


Assuntos
Aceleração , Desempenho Atlético , Atletas , Fenômenos Biomecânicos , Humanos , Movimento
5.
PLoS One ; 16(1): e0228682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33439858

RESUMO

Humans often traverse real-world environments with a variety of surface irregularities and inconsistencies, which can disrupt steady gait and require additional effort. Such effects have, however, scarcely been demonstrated quantitatively, because few laboratory biomechanical measures apply outdoors. Walking can nevertheless be quantified by other means. In particular, the foot's trajectory in space can be reconstructed from foot-mounted inertial measurement units (IMUs), to yield measures of stride and associated variabilities. But it remains unknown whether such measures are related to metabolic energy expenditure. We therefore quantified the effect of five different outdoor terrains on foot motion (from IMUs) and net metabolic rate (from oxygen consumption) in healthy adults (N = 10; walking at 1.25 m/s). Energy expenditure increased significantly (P < 0.05) in the order Sidewalk, Dirt, Gravel, Grass, and Woodchips, with Woodchips about 27% costlier than Sidewalk. Terrain type also affected measures, particularly stride variability and virtual foot clearance (swing foot's lowest height above consecutive footfalls). In combination, such measures can also roughly predict metabolic cost (adjusted R2 = 0.52, partial least squares regression), and even discriminate between terrain types (10% reclassification error). Body-worn sensors can characterize how uneven terrain affects gait, gait variability, and metabolic cost in the real world.


Assuntos
Metabolismo Energético/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos/fisiologia , Feminino , Pé/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Adulto Jovem
6.
Biomater Sci ; 9(2): 482-495, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32812951

RESUMO

Providing physicians with new imaging agents to help detect cancer with better sensitivity and specificity has the potential to significantly improve patient outcomes. Development of new imaging agents could offer improved early cancer detection during routine screening or help surgeons identify tumor margins for surgical resection. In this study, we evaluate the optical properties of a colorful class of dyes and pigments that humans routinely encounter. The pigments are often used in tattoo inks and the dyes are FDA approved for the coloring of foods, drugs, and cosmetics. We characterized their absorption, fluorescence and Raman scattering properties in the hopes of identifying a new panel of dyes that offer exceptional imaging contrast. We found that some of these coloring agents, coined as "optical inks", exhibit a multitude of useful optical properties, outperforming some of the clinically approved imaging dyes on the market. The best performing optical inks (Green 8 and Orange 16) were further incorporated into liposomal nanoparticles to assess their tumor targeting and optical imaging potential. Mouse xenograft models of colorectal, cervical and lymphoma tumors were used to evaluate the newly developed nano-based imaging contrast agents. After intravenous injection, fluorescence imaging revealed significant localization of the new "optical ink" liposomal nanoparticles in all three tumor models as opposed to their neighboring healthy tissues (p < 0.05). If further developed, these coloring agents could play important roles in the clinical setting. A more sensitive imaging contrast agent could enable earlier cancer detection or help guide surgical resection of tumors, both of which have been shown to significantly improve patient survival.


Assuntos
Neoplasias , Tatuagem , Corantes , Meios de Contraste , Humanos , Tinta , Imagem Óptica
7.
Front Med (Lausanne) ; 7: 514, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984385

RESUMO

Background: Near-falls such as a trip, slip, stumble, or misstep involve a loss of balance (LOB) that does not result in a fall, occur more frequently than actual falls, and are associated with an increased fall risk. To date, studies have largely involved detection of simulated laboratory LOBs using wearable devices in young adults. Data on the detection of and kinematics of naturally occurring LOBs in people at high risk of falling are lacking. This may provide a new way to identify older adults at high risk for falls. We aimed to explore key body kinematics underlying real-world trips in at-fall risk community dwelling older adults wearing inertial measurement units (IMU). Methods: Five community-dwelling older adults with a history of falls who reported trips during the study period participated. They wore a voice recorder and 4 IMUs mounted on feet, lower back and wrist for two consecutive weeks to provide a record of the context and timing of LOB events. Sensor data prior to time-stamped voice recording of a trip were processed in order to visually identify unusual foot trajectories and lower back and arm orientations. Then, data of feet, lower back and wrist position and orientation were combined to create a three-dimensional animation representing the estimated body motion during the noted time segments in order to corroborate the occurrence of a trip. Events reported as a trip by the participant and identified as a trip by a researcher, blinded to voice recordings description, were included in the final analysis. Results: A total of 18 trips obtained from five participants were analyzed. Twelve trips occurred at home, three outside and for three the location was not reported. Trips were identified in the sensor data by observing (1) additional peaks to the typical foot velocity signal during swing phase; (2) increased velocity of the contralateral foot and (3) sharp changes in lower back pitch angles. Conclusions: Our approach demonstrates the feasibility of identifying and studying the mechanisms and context underlying trip-related LOBs in at-fall risk older adults during real world activities.

8.
Sensors (Basel) ; 19(11)2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181688

RESUMO

Researchers employ foot-mounted inertial measurement units (IMUs) to estimate the three-dimensional trajectory of the feet as well as a rich array of gait parameters. However, the accuracy of those estimates depends critically on the limitations of the accelerometers and angular velocity gyros embedded in the IMU design. In this study, we reveal the effects of accelerometer range, gyro range, and sampling frequency on gait parameters (e.g., distance traveled, stride length, and stride angle) estimated using the zero-velocity update (ZUPT) method. The novelty and contribution of this work are that it: (1) quantifies these effects at mean speeds commensurate with competitive distance running (up to 6.4 m/s); (2) identifies the root causes of inaccurate foot trajectory estimates obtained from the ZUPT method; and (3) offers important engineering recommendations for selecting accurate IMUs for studying human running. The results demonstrate that the accuracy of the estimated gait parameters generally degrades with increased mean running speed and with decreased accelerometer range, gyro range, and sampling frequency. In particular, the saturation of the accelerometer and/or gyro induced during running for some IMU designs may render those designs highly inaccurate for estimating gait parameters.


Assuntos
Técnicas Biossensoriais/métodos , Desenho de Equipamento/métodos , Corrida/fisiologia , Dispositivos Eletrônicos Vestíveis , Adolescente , Adulto , Feminino , Marcha/fisiologia , Humanos , Masculino , Adulto Jovem
9.
PLoS One ; 14(3): e0214008, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30897123

RESUMO

This study introduces a new method to understand how added load affects human performance across a broad range of athletic tasks (ten obstacles) embedded in an outdoor obstacle course. The method employs an array of wearable inertial measurement units (IMUs) to wirelessly record the movements of major body segments to derive obstacle-specific metrics of performance. The effects of load are demonstrated on (N = 22) participants who each complete the obstacle course under four conditions including unloaded (twice) and with loads of 15% and 30% of their body weight (a total of 88 trials across the group of participants). The IMU-derived performance metrics reveal marked degradations in performance with increasing load across eight of the ten obstacles. Overall, this study demonstrates the significant potential in using this wearable technology to evaluate human performance across multiple tasks and, simultaneously, the adverse effects of body-borne loads on performance. The study addresses a major need of military organizations worldwide that frequently employ standardized obstacle courses to understand how added loads influence warfighter performance. Importantly, the findings and conclusions drawn from IMU data would not be possible using traditional timing metrics used to evaluate task performance.


Assuntos
Desempenho Atlético/fisiologia , Dispositivos Eletrônicos Vestíveis , Suporte de Carga/fisiologia , Tecnologia sem Fio/instrumentação , Adolescente , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Movimento/fisiologia , Equilíbrio Postural/fisiologia , Corrida/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
10.
Med Eng Phys ; 64: 86-92, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30581048

RESUMO

Older adults experience slips, trips, stumbles, and other losses of balance (LOBs). LOBs are more common than falls and are closely linked to falls and fall-injuries. Data about real-world LOBs is limited, particularly information quantifying the prevalence, frequency, and intrinsic and extrinsic circumstances in which they occur. This paper describes a new method to identify and analyze LOBs through long-term recording of community-dwelling older adults. The approach uses wearable inertial measurement units (IMUs) on the feet, trunk and one wrist, together with a voice recorder for immediate, time-stamped self-reporting of the type, context and description of LOBs. Following identification of an LOB in the voice recording, concurrent IMU data is used to estimate foot paths and body motions, and to create body animations to analyze the event. In this pilot study, three older adults performed a long-term monitoring study, with four weeks recording LOBs by voice and two concurrent weeks wearing IMUs. This report presents a series of LOB cases to illustrate the proposed method, and how it can contribute to interpretation of the causes and contexts of the LOBs. The context and timing information from the voice records was critical to the process of finding and analyzing LOB events within the voluminous sensor data record, and included much greater detail, specificity, and nuance than past diary or smartphone reporting.


Assuntos
Vida Independente , Monitorização Fisiológica/métodos , Movimento , Equilíbrio Postural , Autorrelato , Idoso , Feminino , Humanos , Masculino
11.
Biomicrofluidics ; 12(4): 042217, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30018696

RESUMO

The field of drug delivery has taken an interest in combating numerous blood and heart diseases via the use of injectable vascular-targeted carriers (VTCs). However, VTC technology has encountered limited efficacy due to a variety of challenges associated with the immense complexity of the in vivo blood flow environment, including the hemodynamic interactions of blood cells, which impact their margination and adhesion to the vascular wall. Red blood cell (RBC) physiology, i.e., size, shape, and deformability, drive cellular distribution in blood flow and has been shown to impact VTC margination to the vessel wall significantly. The RBC shape and deformability are known to be altered in certain human diseases, yet little experimental work has been conducted towards understanding the effect of these alterations, specifically RBC rigidity, on VTC dynamics in physiological blood flow. In this work, we investigate the impact of RBCs of varying stiffnesses on the adhesion efficacy of particles of various sizes, moduli, and shapes onto an inflamed endothelial layer in a human vasculature-inspired, in vitro blood flow model. The blood rigid RBC compositions and degrees of RBC stiffness evaluated are analogous to conditions in diseases such as sickle cell disease. We find that particles of different sizes, moduli, and shapes yield drastically different adhesion patterns in blood flow in the presence of rigid RBCs when compared to 100% healthy RBCs. Specifically, up to 50% reduction in the localization and adhesion of non-deformable 2 µm particles to the vessel wall was observed in the presence of rigid RBCs. Interestingly, deformable 2 µm particles showed enhanced vessel wall localization and adhesion, by up to 85%, depending on the rigidity of RBCs evaluated. Ultimately, this work experimentally clarifies the importance of considering RBC rigidity in the intelligent design of particle therapeutics and highlights possible implications for a wide range of diseases relating to RBC deformability.

12.
Appl Ergon ; 70: 68-76, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29866328

RESUMO

Manual lifting of loads arises in many occupations as well as in activities of daily living. Prior studies explore lifting biomechanics and conditions implicated in lifting-induced injuries through laboratory-based experimental methods. This study introduces a new measurement method using load-embedded inertial measurement units (IMUs) to evaluate lifting tasks in varied environments outside of the laboratory. An example vertical load lifting task is considered that is included in an outdoor obstacle course. The IMU data, in the form of the load acceleration and angular velocity, is used to estimate load vertical velocity and three lifting performance metrics: the lifting time (speed), power, and motion smoothness. Large qualitative differences in these parameters distinguish exemplar high and low performance trials. These differences are further supported by subsequent statistical analyses of twenty three trials (including a total of 115 total lift/lower cycles) from fourteen healthy participants. Results reveal that lifting time is strongly correlated with lifting power (as expected) but also correlated with motion smoothness. Thus, participants who lift rapidly do so with significantly greater power using motions that minimize motion jerk.


Assuntos
Acelerometria/instrumentação , Remoção , Aceleração , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Modelos Biológicos , Análise e Desempenho de Tarefas , Fatores de Tempo , Adulto Jovem
13.
PLoS One ; 13(2): e0192938, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29447252

RESUMO

OBJECTIVE: Numerous devices have been designed to support the back during lifting tasks. To improve the utility of such devices, this research explores the use of preparatory muscle activity to classify muscle loading and initiate appropriate device activation. The goal of this study was to determine the earliest time window that enabled accurate load classification during a dynamic lifting task. METHODS: Nine subjects performed thirty symmetrical lifts, split evenly across three weight conditions (no-weight, 10-lbs and 24-lbs), while low-back muscle activity data was collected. Seven descriptive statistics features were extracted from 100 ms windows of data. A multinomial logistic regression (MLR) classifier was trained and tested, employing leave-one subject out cross-validation, to classify lifted load values. Dimensionality reduction was achieved through feature cross-correlation analysis and greedy feedforward selection. The time of full load support by the subject was defined as load-onset. RESULTS: Regions of highest average classification accuracy started at 200 ms before until 200 ms after load-onset with average accuracies ranging from 80% (±10%) to 81% (±7%). The average recall for each class ranged from 69-92%. CONCLUSION: These inter-subject classification results indicate that preparatory muscle activity can be leveraged to identify the intent to lift a weight up to 100 ms prior to load-onset. The high accuracies shown indicate the potential to utilize intent classification for assistive device applications. SIGNIFICANCE: Active assistive devices, e.g. exoskeletons, could prevent back injury by off-loading low-back muscles. Early intent classification allows more time for actuators to respond and integrate seamlessly with the user.


Assuntos
Músculos do Dorso/fisiologia , Dorso/fisiologia , Eletromiografia , Remoção , Atividade Motora/fisiologia , Processamento de Sinais Assistido por Computador , Eletromiografia/métodos , Feminino , Humanos , Modelos Logísticos , Masculino , Adulto Jovem
14.
Sensors (Basel) ; 17(11)2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149063

RESUMO

Stair running, both ascending and descending, is a challenging aerobic exercise that many athletes, recreational runners, and soldiers perform during training. Studying biomechanics of stair running over multiple steps has been limited by the practical challenges presented while using optical-based motion tracking systems. We propose using foot-mounted inertial measurement units (IMUs) as a solution as they enable unrestricted motion capture in any environment and without need for external references. In particular, this paper presents methods for estimating foot velocity and trajectory during stair running using foot-mounted IMUs. Computational methods leverage the stationary periods occurring during the stance phase and known stair geometry to estimate foot orientation and trajectory, ultimately used to calculate stride metrics. These calculations, applied to human participant stair running data, reveal performance trends through timing, trajectory, energy, and force stride metrics. We present the results of our analysis of experimental data collected on eleven subjects. Overall, we determine that for either ascending or descending, the stance time is the strongest predictor of speed as shown by its high correlation with stride time.


Assuntos
Atletas , Fisiologia/instrumentação , Fisiologia/métodos , Corrida/fisiologia , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , , Humanos , Movimento (Física)
15.
PLoS One ; 12(11): e0188184, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145504

RESUMO

Running agility is required for many sports and other physical tasks that demand rapid changes in body direction. Quantifying agility skill remains a challenge because measuring rapid changes of direction and quantifying agility skill from those measurements are difficult to do in ways that replicate real task/game play situations. The objectives of this study were to define and to measure agility performance for a (five-cone) agility drill used within a military obstacle course using data harvested from two foot-mounted inertial measurement units (IMUs). Thirty-two recreational athletes ran an agility drill while wearing two IMUs secured to the tops of their athletic shoes. The recorded acceleration and angular rates yield estimates of the trajectories, velocities and accelerations of both feet as well as an estimate of the horizontal velocity of the body mass center. Four agility performance metrics were proposed and studied including: 1) agility drill time, 2) horizontal body speed, 3) foot trajectory turning radius, and 4) tangential body acceleration. Additionally, the average horizontal ground reaction during each footfall was estimated. We hypothesized that shorter agility drill performance time would be observed with small turning radii and large tangential acceleration ranges and body speeds. Kruskal-Wallis and mean rank post-hoc statistical analyses revealed that shorter agility drill performance times were observed with smaller turning radii and larger tangential acceleration ranges and body speeds, as hypothesized. Moreover, measurements revealed the strategies that distinguish high versus low performers. Relative to low performers, high performers used sharper turns, larger changes in body speed (larger tangential acceleration ranges), and shorter duration footfalls that generated larger horizontal ground reactions during the turn phases. Overall, this study advances the use of foot-mounted IMUs to quantify agility performance in contextually-relevant settings (e.g., field of play, training facilities, obstacle courses, etc.).


Assuntos
Desempenho Atlético , Pé/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
16.
Sensors (Basel) ; 17(9)2017 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-28846613

RESUMO

Three-dimensional rotations across the human knee serve as important markers of knee health and performance in multiple contexts including human mobility, worker safety and health, athletic performance, and warfighter performance. While knee rotations can be estimated using optical motion capture, that method is largely limited to the laboratory and small capture volumes. These limitations may be overcome by deploying wearable inertial measurement units (IMUs). The objective of this study is to present a new IMU-based method for estimating 3D knee rotations and to benchmark the accuracy of the results using an instrumented mechanical linkage. The method employs data from shank- and thigh-mounted IMUs and a vector constraint for the medial-lateral axis of the knee during periods when the knee joint functions predominantly as a hinge. The method is carefully validated using data from high precision optical encoders in a mechanism that replicates 3D knee rotations spanning (1) pure flexion/extension, (2) pure internal/external rotation, (3) pure abduction/adduction, and (4) combinations of all three rotations. Regardless of the movement type, the IMU-derived estimates of 3D knee rotations replicate the truth data with high confidence (RMS error < 4 ° and correlation coefficient r ≥ 0.94 ).


Assuntos
Articulação do Joelho , Fenômenos Biomecânicos , Humanos , Movimento , Amplitude de Movimento Articular , Rotação
17.
J Biomech ; 53: 1-8, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28161109

RESUMO

Humans perform a variety of feedback adjustments to maintain balance during walking. These include lateral footfall placement, and center of pressure adjustment under the stance foot, to stabilize lateral balance. A less appreciated possibility would be to steer for balance like a bicycle, whose front wheel may be turned toward the direction of a lean to capture the center of mass. Humans could potentially combine steering with other strategies to distribute balance adjustments across multiple degrees of freedom. We tested whether human balance can theoretically benefit from steering, and experimentally tested for evidence of steering for balance. We first developed a simple dynamic walking model, which shows that bipedal walking may indeed be stabilized through steering-externally rotating the foot about vertical toward the direction of lateral lean for each footfall-governed by linear feedback control. Moreover, least effort (mean-square control torque) is required if steering is combined with lateral foot placement. If humans use such control, footfall variability should show a statistical coupling between external rotation with lateral placement. We therefore examined the spontaneous fluctuations of hundreds of strides of normal overground walking in healthy adults (N=26). We found significant coupling (P=9·10-8), of 0.54rad of external rotation per meter of lateral foot deviation. Successive footfalls showed a weaker, negative correlation with each other, similar to how a bicycle׳s steering adjustment made for balance must be followed by gradual corrections to resume the original travel direction. Steering may be one of multiple strategies to stabilize balance during walking.


Assuntos
Pé/fisiologia , Equilíbrio Postural/fisiologia , Caminhada/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos , Retroalimentação Fisiológica , Feminino , Humanos , Masculino , Modelos Biológicos , Torque , Adulto Jovem
18.
Am J Ophthalmol ; 176: 26-32, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28048975

RESUMO

PURPOSE: To describe the various types of head-mounted display technology, their optical and human-factors considerations, and their potential for use in low-vision rehabilitation and vision enhancement. DESIGN: Expert perspective. METHODS: An overview of head-mounted display technology by an interdisciplinary team of experts drawing on key literature in the field. RESULTS: Head-mounted display technologies can be classified based on their display type and optical design. See-through displays such as retinal projection devices have the greatest potential for use as low-vision aids. Devices vary by their relationship to the user's eyes, field of view, illumination, resolution, color, stereopsis, effect on head motion, and user interface. These optical and human-factors considerations are important when selecting head-mounted displays for specific applications and patient groups. CONCLUSIONS: Head-mounted display technologies may offer advantages over conventional low-vision aids. Future research should compare head-mounted displays with commonly prescribed low-vision aids to compare their effectiveness in addressing the impairments and rehabilitation goals of diverse patient populations.


Assuntos
Apresentação de Dados , Percepção de Profundidade/fisiologia , Óculos , Aumento da Imagem/instrumentação , Reconhecimento Automatizado de Padrão/métodos , Transtornos da Visão/reabilitação , Desenho de Equipamento , Humanos , Estimulação Luminosa , Transtornos da Visão/fisiopatologia
19.
Med Eng Phys ; 37(10): 929-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26250066

RESUMO

Walking is not always a free and unencumbered task. Everyday activities such as walking in pairs, in groups, or on structured walkways can limit the acceptable gait patterns, leading to motor behavior that differs from that observed in more self-selected gait. Such different contexts may lead to gait performance different than observed in typical laboratory experiments, for example, during treadmill walking. We sought to systematically measure the impact of such task constraints by comparing gait parameters and their variability during walking in different conditions over-ground, and on a treadmill. We reconstructed foot motion from foot-mounted inertial sensors, and characterized forward, lateral and angular foot placement while subjects walked over-ground in a straight hallway and on a treadmill. Over-ground walking was performed in three variations: with no constraints (self-selected, SS); while deliberately varying walking speed (self-varied, SV); and while following a toy pace car programmed to vary speed (externally-varied, EV). We expected that these conditions would exhibit a statistically similar relationship between stride length and speed, and between stride length and stride period. We also expected treadmill walking (TM) would differ in two ways: first, that variability in stride length and stride period would conform to a constant-speed constraint opposite in slope from the normal relationship; and second, that stride length would decrease, leading to combinations of stride length and speed not observed in over-ground conditions. Results showed that all over-ground conditions used similar stride length-speed relationships, and that variability in treadmill walking conformed to a constant-speed constraint line, as expected. Decreased stride length was observed in both TM and EV conditions, suggesting adaptations due to heightened awareness or to prepare for unexpected changes or problems. We also evaluated stride variability in constrained and unconstrained tasks. We observed that in treadmill walking, lateral variability decreased while forward variability increased, and the normally-observed correlation between wider foot placement and external foot rotation was eliminated. Preferred stride parameters and their variability appear significantly influenced by the context and constraints of the walking task.


Assuntos
Caminhada , Acelerometria , Idoso , Fenômenos Biomecânicos , Feminino , Pé/fisiologia , Humanos , Masculino , Atividade Motora/fisiologia , Caminhada/fisiologia , Adulto Jovem
20.
Gait Posture ; 38(4): 974-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23810335

RESUMO

Gait parameters such as stride length, width, and period, as well as their respective variabilities, are widely used as indicators of mobility and walking function. Foot placement and its variability have thus been applied in areas such as aging, fall risk, spinal cord injury, diabetic neuropathy, and neurological conditions. But a drawback is that these measures are presently best obtained with specialized laboratory equipment such as motion capture systems and instrumented walkways, which may not be available in many clinics and certainly not during daily activities. One alternative is to fix inertial measurement units (IMUs) to the feet or body to gather motion data. However, few existing methods measure foot placement directly, due to drift associated with inertial data. We developed a method to measure stride-to-stride foot placement in unconstrained environments, and tested whether it can accurately quantify gait parameters over long walking distances. The method uses ground contact conditions to correct for drift, and state estimation algorithms to improve estimation of angular orientation. We tested the method with healthy adults walking over-ground, averaging 93 steps per trial, using a mobile motion capture system to provide reference data. We found IMU estimates of mean stride length and duration within 1% of motion capture, and standard deviations of length and width within 4% of motion capture. Step width cannot be directly estimated by IMUs, although lateral stride variability can. Inertial sensors measure walks over arbitrary distances, yielding estimates with good statistical confidence. Gait can thus be measured in a variety of environments, and even applied to long-term monitoring of everyday walking.


Assuntos
Acelerometria/métodos , Algoritmos , Pé/fisiologia , Marcha/fisiologia , Monitorização Ambulatorial/métodos , Processamento de Sinais Assistido por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...