Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124056, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447438

RESUMO

6-mercaptopurine (6MP) is a chemotherapeuticdrug widely used for treating inflammatory bowel diseases and several cancers. Nevertheless, determining and monitoring its concentration in the human body is highly important because over or under-doses of 6MP can lead to critical health issues. In this paper, we have developed a turn-on fluorescent probe for the determination of the anticancer drug 6-mercaptopurine (6-MP) based on coordination complex [Nd (Anth)3 (H2O)3]. [Nd (Anth)3 (H2O)3] has been synthesized through a simple precipitation process taking the stoichiometric ratio of Nd (III) nitrate hexahydrate and 2-aminobenzoic acid (2-ABA), commonly known as anthranilic acid (Anth). The synthesis and structure have been investigated and validated by different characterizations like UV-visible spectroscopy, FT-IR, HRMS, XPS, and SEM. The synthesized complex displayed excellent fluorescence properties, and the fluorescence intensity was enhanced with the addition of 6MP in the form of a [Fe (6MP)3]2+ mixed complex (Fe-6MP), which is formed by dissolving it in FeCl3. The fabricated sensors displayed the best linear response in a wide range of concentrations from 2.55 µM to 45.51 µM of 6MP. The lower limit of detection (LOD) of the developed sensor was found to be 0.26 µM with a linear correlation coefficient (R2) of 0.99. The synthesized probe gives an acceptable response for the sensing of 6MP in the presence of several interfering agents.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Mercaptopurina , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Neuroinflammation ; 20(1): 299, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098019

RESUMO

BACKGROUND: The neurological effects of the coronavirus disease of 2019 (COVID-19) raise concerns about potential long-term consequences, such as an increased risk of Alzheimer's disease (AD). Neuroinflammation and other AD-associated pathologies are also suggested to increase the risk of serious SARS-CoV-2 infection. Anosmia is a common neurological symptom reported in COVID-19 and in early AD. The olfactory mucosa (OM) is important for the perception of smell and a proposed site of viral entry to the brain. However, little is known about SARS-CoV-2 infection at the OM of individuals with AD. METHODS: To address this gap, we established a 3D in vitro model of the OM from primary cells derived from cognitively healthy and AD individuals. We cultured the cells at the air-liquid interface (ALI) to study SARS-CoV-2 infection under controlled experimental conditions. Primary OM cells in ALI expressed angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and several other known SARS-CoV-2 receptor and were highly vulnerable to infection. Infection was determined by secreted viral RNA content and confirmed with SARS-CoV-2 nucleocapsid protein (NP) in the infected cells by immunocytochemistry. Differential responses of healthy and AD individuals-derived OM cells to SARS-CoV-2 were determined by RNA sequencing. RESULTS: Results indicate that cells derived from cognitively healthy donors and individuals with AD do not differ in susceptibility to infection with the wild-type SARS-CoV-2 virus. However, transcriptomic signatures in cells from individuals with AD are highly distinct. Specifically, the cells from AD patients that were infected with the virus showed increased levels of oxidative stress, desensitized inflammation and immune responses, and alterations to genes associated with olfaction. These results imply that individuals with AD may be at a greater risk of experiencing severe outcomes from the infection, potentially driven by pre-existing neuroinflammation. CONCLUSIONS: The study sheds light on the interplay between AD pathology and SARS-CoV-2 infection. Altered transcriptomic signatures in AD cells may contribute to unique symptoms and a more severe disease course, with a notable involvement of neuroinflammation. Furthermore, the research emphasizes the need for targeted interventions to enhance outcomes for AD patients with viral infection. The study is crucial to better comprehend the relationship between AD, COVID-19, and anosmia. It highlights the importance of ongoing research to develop more effective treatments for those at high risk of severe SARS-CoV-2 infection.


Assuntos
Doença de Alzheimer , COVID-19 , Humanos , SARS-CoV-2 , Anosmia/metabolismo , Doenças Neuroinflamatórias , Doença de Alzheimer/metabolismo , Mucosa Olfatória/metabolismo
3.
bioRxiv ; 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37503261

RESUMO

Emerging variants of concern of SARS-CoV-2 can significantly reduce the prophylactic and therapeutic efficacy of vaccines and neutralizing antibodies due to mutations in the viral genome. Targeting cell host factors required for infection provides a complementary strategy to overcome this problem since the host genome is less susceptible to variation during the life span of infection. The enzymatic activities of the endosomal PIKfyve phosphoinositide kinase and the serine protease TMPRSS2 are essential to meditate infection in two complementary viral entry pathways. Simultaneous inhibition in cultured cells of their enzymatic activities with the small molecule inhibitors apilimod dimesylate and nafamostat mesylate synergistically prevent viral entry and infection of native SARS-CoV-2 and vesicular stomatitis virus (VSV)-SARS-CoV-2 chimeras expressing the SARS-CoV-2 surface spike (S) protein and of variants of concern. We now report prophylactic prevention of lung infection in mice intranasally infected with SARS-CoV-2 beta by combined intranasal delivery of very low doses of apilimod dimesylate and nafamostat mesylate, in a formulation that is stable for over 3 months at room temperature. Administration of these drugs up to 6 hours post infection did not inhibit infection of the lungs but substantially reduced death of infected airway epithelial cells. The efficiency and simplicity of formulation of the drug combination suggests its suitability as prophylactic or therapeutic treatment against SARS-CoV-2 infection in households, point of care facilities, and under conditions where refrigeration would not be readily available.

4.
Microbiol Spectr ; 11(4): e0055223, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37436162

RESUMO

Enteroviruses are one of the most abundant viruses causing mild to serious acute infections in humans and also contributing to chronic diseases like type 1 diabetes. Presently, there are no approved antiviral drugs against enteroviruses. Here, we studied the potency of vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, as an antiviral against enteroviruses. We showed that vemurafenib prevented enterovirus translation and replication at low micromolar dosage in an RAF/MEK/ERK-independent manner. Vemurafenib was effective against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect was related to a cellular phosphatidylinositol 4-kinase type IIIß (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevented infection efficiently in acute cell models, eradicated infection in a chronic cell model, and lowered virus amounts in pancreas and heart in an acute mouse model. Altogether, instead of acting through the RAF/MEK/ERK pathway, vemurafenib affects the cellular PI4KB and, hence, enterovirus replication, opening new possibilities to evaluate further the potential of vemurafenib as a repurposed drug in clinical care. IMPORTANCE Despite the prevalence and medical threat of enteroviruses, presently, there are no antivirals against them. Here, we show that vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, prevents enterovirus translation and replication. Vemurafenib shows efficacy against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect acts through cellular phosphatidylinositol 4-kinase type IIIß (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevents infection efficiently in acute cell models, eradicates infection in a chronic cell model, and lowers virus amounts in pancreas and heart in an acute mouse model. Our findings open new possibilities to develop drugs against enteroviruses and give hope for repurposing vemurafenib as an antiviral drug against enteroviruses.


Assuntos
Infecções por Enterovirus , Enterovirus , Melanoma , Animais , Camundongos , Humanos , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , 1-Fosfatidilinositol 4-Quinase , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Infecções por Enterovirus/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno , Mutação
5.
J Virol ; 97(4): e0014423, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37039676

RESUMO

2019 coronavirus disease (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to respiratory illness, COVID-19 patients exhibit neurological symptoms lasting from weeks to months (long COVID). It is unclear whether these neurological manifestations are due to an infection of brain cells. We found that a small fraction of human induced pluripotent stem cell (iPSC)-derived neurons, but not astrocytes, were naturally susceptible to SARS-CoV-2. Based on the inhibitory effect of blocking antibodies, the infection seemed to depend on the receptor angiotensin-converting enzyme 2 (ACE2), despite very low levels of its expression in neurons. The presence of double-stranded RNA in the cytoplasm (the hallmark of viral replication), abundant synthesis of viral late genes localized throughout infected cells, and an increase in the level of viral RNA in the culture medium (viral release) within the first 48 h of infection suggested that the infection was productive. Productive entry of SARS-CoV-2 requires the fusion of the viral and cellular membranes, which results in the delivery of the viral genome into the cytoplasm of the target cell. The fusion is triggered by proteolytic cleavage of the viral surface spike protein, which can occur at the plasma membrane or from endosomes or lysosomes. We found that SARS-CoV-2 infection of human neurons was insensitive to nafamostat and camostat, which inhibit cellular serine proteases, including transmembrane serine protease 2 (TMPRSS2). Inhibition of cathepsin L also did not significantly block infection. In contrast, the neuronal infection was blocked by apilimod, an inhibitor of phosphatidyl-inositol 5 kinase (PIK5K), which regulates early to late endosome maturation. IMPORTANCE COVID-19 is a disease caused by the coronavirus SARS-CoV-2. Millions of patients display neurological symptoms, including headache, impairment of memory, seizures, and encephalopathy, as well as anatomical abnormalities, such as changes in brain morphology. SARS-CoV-2 infection of the human brain has been documented, but it is unclear whether the observed neurological symptoms are linked to direct brain infection. The mechanism of virus entry into neurons has also not been characterized. Here, we investigated SARS-CoV-2 infection by using a human iPSC-derived neural cell model and found that a small fraction of cortical-like neurons was naturally susceptible to infection. The productive infection was ACE2 dependent and TMPRSS2 independent. We also found that the virus used the late endosomal and lysosomal pathway for cell entry and that the infection could be blocked by apilimod, an inhibitor of cellular PIK5K.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , COVID-19/fisiopatologia , Endossomos/metabolismo , Endossomos/virologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Síndrome de COVID-19 Pós-Aguda/fisiopatologia , Síndrome de COVID-19 Pós-Aguda/virologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos , Fosfotransferases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Astrócitos/virologia , Células Cultivadas
6.
Proc Natl Acad Sci U S A ; 119(38): e2209514119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36048924

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cell entry starts with membrane attachment and ends with spike (S) protein-catalyzed membrane fusion depending on two cleavage steps, namely, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time three-dimensional single-virion tracking, we show that fusion and genome penetration require virion exposure to an acidic milieu of pH 6.2 to 6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2-overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2-expressing cells in the acidic milieu of the nasal cavity.


Assuntos
COVID-19 , Cavidade Nasal , SARS-CoV-2 , Serina Endopeptidases , Internalização do Vírus , COVID-19/virologia , Furina/genética , Furina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cavidade Nasal/química , Cavidade Nasal/virologia , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(40): e2210990119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36122200

RESUMO

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available coronavirus disease 2019 vaccines and monoclonal antibody therapies through epitope change on the receptor binding domain of the viral spike glycoprotein. Hence, there is a specific urgent need for alternative antivirals that target processes less likely to be affected by mutation, such as the membrane fusion step of viral entry into the host cell. One such antiviral class includes peptide inhibitors, which block formation of the so-called heptad repeat 1 and 2 (HR1HR2) six-helix bundle of the SARS-CoV-2 spike (S) protein and thus interfere with viral membrane fusion. We performed structural studies of the HR1HR2 bundle, revealing an extended, well-folded N-terminal region of HR2 that interacts with the HR1 triple helix. Based on this structure, we designed an extended HR2 peptide that achieves single-digit nanomolar inhibition of SARS-CoV-2 in cell-based and virus-based assays without the need for modifications such as lipidation or chemical stapling. The peptide also strongly inhibits all major SARS-CoV-2 variants to date. This extended peptide is ∼100-fold more potent than all previously published short, unmodified HR2 peptides, and it has a very long inhibition lifetime after washout in virus infection assays, suggesting that it targets a prehairpin intermediate of the SARS-CoV-2 S protein. Together, these results suggest that regions outside the HR2 helical region may offer new opportunities for potent peptide-derived therapeutics for SARS-CoV-2 and its variants, and even more distantly related viruses, and provide further support for the prehairpin intermediate of the S protein.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Antivirais/química , Antivirais/farmacologia , Humanos , Peptídeos/química , Peptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos
8.
bioRxiv ; 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35982670

RESUMO

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available COVID-19 vaccines and monoclonal antibody therapies through epitope change on the receptor binding domain of the viral spike glycoprotein. Hence, there is a specific urgent need for alternative antivirals that target processes less likely to be affected by mutation, such as the membrane fusion step of viral entry into the host cell. One such antiviral class includes peptide inhibitors which block formation of the so-called HR1HR2 six-helix bundle of the SARS-CoV-2 spike (S) protein and thus interfere with viral membrane fusion. Here we performed structural studies of the HR1HR2 bundle, revealing an extended, well-folded N-terminal region of HR2 that interacts with the HR1 triple helix. Based on this structure, we designed an extended HR2 peptide that achieves single-digit nanomolar inhibition of SARS-CoV-2 in cell-based fusion, VSV-SARS-CoV-2 chimera, and authentic SARS-CoV-2 infection assays without the need for modifications such as lipidation or chemical stapling. The peptide also strongly inhibits all major SARS-CoV-2 variants to date. This extended peptide is ~100-fold more potent than all previously published short, unmodified HR2 peptides, and it has a very long inhibition lifetime after washout in virus infection assays, suggesting that it targets a pre-hairpin intermediate of the SARS-CoV-2 S protein. Together, these results suggest that regions outside the HR2 helical region may offer new opportunities for potent peptide-derived therapeutics for SARS-CoV-2 and its variants, and even more distantly related viruses, and provide further support for the pre-hairpin intermediate of the S protein. Significance Statement: SARS-CoV-2 infection requires fusion of viral and host membranes, mediated by the viral spike glycoprotein (S). Due to the importance of viral membrane fusion, S has been a popular target for developing vaccines and therapeutics. We discovered a simple peptide that inhibits infection by all major variants of SARS-CoV-2 with nanomolar efficacies. In marked contrast, widely used shorter peptides that lack a key N-terminal extension are about 100 x less potent than this peptide. Our results suggest that a simple peptide with a suitable sequence can be a potent and cost-effective therapeutic against COVID-19 and they provide new insights at the virus entry mechanism.

9.
bioRxiv ; 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35702155

RESUMO

SARS-CoV-2 cell entry starts with membrane attachment and ends with spike-protein (S) catalyzed membrane fusion depending on two cleavage steps, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time 3D single virion tracking, we show fusion and genome penetration requires virion exposure to an acidic milieu of pH 6.2-6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2 overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2 expressing cells in the acidic milieu of the nasal cavity. Significance Statement: Infection by SARS-CoV-2 depends upon the S large spike protein decorating the virions and is responsible for receptor engagement and subsequent fusion of viral and cellular membranes allowing release of virion contents into the cell. Using new single particle imaging tools, to visualize and track the successive steps from virion attachment to fusion, combined with chemical and genetic perturbations of the cells, we provide the first direct evidence for the cellular uptake routes of productive infection in multiple cell types and their dependence on proteolysis of S by cell surface or endosomal proteases. We show that fusion and content release always require the acidic environment from endosomes, preceded by liberation of the S1 fragment which depends on ACE2 receptor engagement. One sentence summary: Detailed molecular snapshots of the productive infectious entry pathway of SARS-CoV-2 into cells.

10.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962256

RESUMO

The pharmacological arsenal against the COVID-19 pandemic is largely based on generic anti-inflammatory strategies or poorly scalable solutions. Moreover, as the ongoing vaccination campaign is rolling slower than wished, affordable and effective therapeutics are needed. To this end, there is increasing attention toward computational methods for drug repositioning and de novo drug design. Here, multiple data-driven computational approaches are systematically integrated to perform a virtual screening and prioritize candidate drugs for the treatment of COVID-19. From the list of prioritized drugs, a subset of representative candidates to test in human cells is selected. Two compounds, 7-hydroxystaurosporine and bafetinib, show synergistic antiviral effects in vitro and strongly inhibit viral-induced syncytia formation. Moreover, since existing drug repositioning methods provide limited usable information for de novo drug design, the relevant chemical substructures of the identified drugs are extracted to provide a chemical vocabulary that may help to design new effective drugs.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19 , Células Gigantes , Pirimidinas/farmacologia , SARS-CoV-2/metabolismo , Estaurosporina/análogos & derivados , Células A549 , COVID-19/metabolismo , Biologia Computacional , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Células Gigantes/metabolismo , Células Gigantes/virologia , Humanos , Estaurosporina/farmacologia
11.
J Virol ; 95(21): e0097521, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406858

RESUMO

Repurposing FDA-approved inhibitors able to prevent infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could provide a rapid path to establish new therapeutic options to mitigate the effects of coronavirus disease 2019 (COVID-19). Proteolytic cleavages of the spike (S) protein of SARS-CoV-2, mediated by the host cell proteases cathepsin and TMPRSS2, alone or in combination, are key early activation steps required for efficient infection. The PIKfyve kinase inhibitor apilimod interferes with late endosomal viral traffic and through an ill-defined mechanism prevents in vitro infection through late endosomes mediated by cathepsin. Similarly, inhibition of TMPRSS2 protease activity by camostat mesylate or nafamostat mesylate prevents infection mediated by the TMPRSS2-dependent and cathepsin-independent pathway. Here, we combined the use of apilimod with camostat mesylate or nafamostat mesylate and found an unexpected ∼5- to 10-fold increase in their effectiveness to prevent SARS-CoV-2 infection in different cell types. Comparable synergism was observed using both a chimeric vesicular stomatitis virus (VSV) containing S of SARS-CoV-2 (VSV-SARS-CoV-2) and SARS-CoV-2. The substantial ∼5-fold or higher decrease of the half-maximal effective concentrations (EC50s) suggests a plausible treatment strategy based on the combined use of these inhibitors. IMPORTANCE Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the coronavirus disease 2019 (COVID-2019) global pandemic. There are ongoing efforts to uncover effective antiviral agents that could mitigate the severity of the disease by controlling the ensuing viral replication. Promising candidates include small molecules that inhibit the enzymatic activities of host proteins, thus preventing SARS-CoV-2 entry and infection. They include apilimod, an inhibitor of PIKfyve kinase, and camostat mesylate and nafamostat mesylate, inhibitors of TMPRSS2 protease. Our research is significant for having uncovered an unexpected synergism in the effective inhibitory activity of apilimod used together with camostat mesylate or nafamostat mesylate.


Assuntos
Antivirais/farmacologia , Benzamidinas/farmacologia , Ésteres/farmacologia , Guanidinas/farmacologia , Hidrazonas/farmacologia , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Pirimidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Sinergismo Farmacológico , Humanos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/fisiologia , Células Vero , Internalização do Vírus , Tratamento Farmacológico da COVID-19
12.
bioRxiv ; 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34100014

RESUMO

Repurposing FDA-approved inhibitors able to prevent infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could provide a rapid path to establish new therapeutic options to mitigate the effects of coronavirus disease 2019 (COVID-19). Proteolytic cleavages of the spike S protein of SARS-CoV-2, mediated by the host cell proteases cathepsin and TMPRSS2, alone or in combination, are key early activation steps required for efficient infection. The PIKfyve kinase inhibitor apilimod interferes with late endosomal viral traffic, and through an ill-defined mechanism prevents in vitro infection through late endosomes mediated by cathepsin. Similarly, inhibition of TMPRSS2 protease activity by camostat mesylate or nafamostat mesylate prevents infection mediated by the TMPRSS2-dependent and cathepsin-independent pathway. Here, we combined the use of apilimod with camostat mesylate or nafamostat mesylate and found an unexpected ~5-10-fold increase in their effectiveness to prevent SARS-CoV-2 infection in different cell types. Comparable synergism was observed using both, a chimeric vesicular stomatitis virus (VSV) containing S of SARS-CoV-2 (VSV-SARS-CoV-2) and SARS-CoV-2 virus. The substantial ~5-fold or more decrease of half maximal effective concentrations (EC50 values) suggests a plausible treatment strategy based on the combined use of these inhibitors.

13.
Science ; 370(6518): 856-860, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33082293

RESUMO

The causative agent of coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For many viruses, tissue tropism is determined by the availability of virus receptors and entry cofactors on the surface of host cells. In this study, we found that neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, an effect blocked by a monoclonal blocking antibody against NRP1. A SARS-CoV-2 mutant with an altered furin cleavage site did not depend on NRP1 for infectivity. Pathological analysis of olfactory epithelium obtained from human COVID-19 autopsies revealed that SARS-CoV-2 infected NRP1-positive cells facing the nasal cavity. Our data provide insight into SARS-CoV-2 cell infectivity and define a potential target for antiviral intervention.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Neuropilina-1/metabolismo , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/imunologia , Betacoronavirus/genética , COVID-19 , Células CACO-2 , Feminino , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Pulmão/metabolismo , Masculino , Nanopartículas Metálicas , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neuropilina-1/química , Neuropilina-1/genética , Neuropilina-1/imunologia , Neuropilina-2/metabolismo , Mucosa Olfatória/metabolismo , Mucosa Olfatória/virologia , Pandemias , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Domínios Proteicos , Mucosa Respiratória/metabolismo , SARS-CoV-2 , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/química
14.
Mikrochim Acta ; 187(1): 74, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863203

RESUMO

MoS2 quantum dots were hydrothermally synthesized and utilized for the formation and stabilization of a nanocomposite with silver nanoparticles (AgNPs) in a single step. This composite was characterized by transmission electron microscopy and zeta potential measurements. It is found that this nanohybrid can be stimulated by mercury(II) ion and then exhibits excellent oxidase mimicking activity. The oxidase-like activity is demonstrated by the oxidation of 3,3',5,5'-tetramethylbenzidine by H2O2 that leads to the formation of a blue product. An assay was developed for determination of cysteine (Cys) at ultra-trace level because Cys inhibits the activity of the nanozyme via interaction with Hg(II). The Cys assay, best performed at a wavelength of 652 nm, works in the 1-100 µM concentration range and has a 0.82 µM detection limit. In addition, a portable Cys test kit is described that was applied to the determination of Cys in serum samples. The resulting colorations were compared with color chat wheel. The method is simple, rapid, cost-effective, and sensitive. Graphical abstractSchematic presentation of oxidase mimetic activity of the Hg@ MoS2-QDs-AgNPs and colorimetric sensing of Cys.

15.
Langmuir ; 33(47): 13572-13580, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29099604

RESUMO

Two-dimensional (2D) inorganic layered materials when embedded in organic polymer matrix exhibit exotic properties that are grabbing contemporary attention for various applications. Here, nanosheet morphology of molybdenum disufide (MoS2) synthesized via one-pot facile hydrothermal reaction are exfoliated in benign aqueous medium in the presence of indole to obtain a stable dispersion. These exfoliated nanosheets then act as host to template the controlled polymerization of indole. The preassembled MoS2-polyindole (MoS2-PIn) nanostructures are reorganized at the air-water interface using the Langmuir method to facilitate maximum interfacial interaction between nanosheet and polymer. This report emphasizes large area, homogeneous dispersion of uniform-sized MoS2 nanosheets (40-60 nm diameter) in the PIn matrix and the formation of stable and uniform film via the Langmuir-Schaefer (LS) method. These self-assembled, MoS2 decorated PIn LS films are characterized using atomic force microscopy (AFM) and transmission electron microscopy (TEM). The fabricated LS films in sandwiched structure Al/MoS2-PIn/ITO as the Schottky diode portrayed remarkable enhancements in charge transport properties. Our study illustrates the potential of the MoS2-PIn LS film in electronic applications and opens a new dimension for uniform dispersion of 2D materials in other polymers via the Langmuir method for device fabrication and enhancement of electrical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...