Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38954410

RESUMO

OBJECTIVES: This study investigated the antidiabetic effects of the methanolic extract of E. africanum (MEEA) stem bark on streptozotocin (STZ)-induced diabetic nephropathy (DN) in Wistar rats. METHODS: The in vitro enzyme (α-amylase) inhibitory activity of MEEA was measured using a standard procedure. Diabetic rats with fasting blood glucose above 250 mg/dL were considered diabetic and were divided into the following groups: control (distilled water-treated), diabetic-control, diabetic metformin (100 mg/kg), diabetes + MEEA (150 mg/kg), and diabetes + MEEA (300 mg/kg) via oral gavage once daily for 14 days. At the end of the experimental period, kidney tissues were collected for biochemical and histological analyses. Kidney apoptosis and marker gene expression were measured by real-time quantitative PCR. RESULTS: MEEA exhibited α-amylase inhibitory effects. MEEA significantly (p<0.05) reduced the STZ-induced increases in blood glucose, serum urea, serum creatinine, uric acid, alanine aminotransferase, alkaline phosphatase, and malondialdehyde and increased the STZ-induced decreases in superoxide dismutase, catalase, and reduced glutathione. In addition, MEEA protects against DN by significantly downregulating the mRNA expression of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP-response binding protein (CREB), and cFOS and upregulating B-cell lymphoma 2 (Bcl-2), suggesting that the nephroprotective ability of MEEA is due to the modulation of the cAMP/PKA/CREB/cFOS signaling pathway. Furthermore, MEEA treatment protected against histopathological alterations observed in diabetic rats. CONCLUSIONS: The data from this study suggest that MEEA modulates glucose homeostasis and inhibits redox imbalance in DN rats.

2.
PLoS One ; 19(6): e0306039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38924022

RESUMO

BACKGROUND: Spilanthes filicaulis (Schumach. & Thonn.) C. D Adam is a shrubby plant of the Asteraceae family that has medicinal benefits for the pharmaceutical and cosmetic industries. PURPOSE: The purpose of this study was to assess the effectiveness of Spilanthes filicaulis leaf extract in a streptozotocin (STZ)-induced rat model and the associated signaling pathways. METHODS: A sample of 25 male Wistar rats was randomly assigned to groups I, II, III, IV, and V. Each group included five animals, i.e., control rats, diabetic control rats, diabetic rats treated with metformin, and diabetic rats treated with 150 mg/kg/bw and 300 mg/kg/bw of the methanolic extract of S. filicaulis leaves (MESFL). Treatment was administered for 15 successive days via oral gavage. After 15 days, the rats were evaluated for fasting blood glucose (FBG), glycated hemoglobin (HbA1c), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (MDA), hexokinase, and glucose-6-phosphatase activities. Gene expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPAR-γ), kelch-like ECH-associated protein 1 (Keap1), protein tyrosine phosphatase 1B (PTP1B) and the antiapoptotic protein caspase-3 were examined. RESULTS: MESFL was administered to diabetic rats, and changes in body weight, fasting blood glucose (FBG) and HbA1c were restored. Furthermore, in diabetic rats, S. filicaulis significantly reduced the levels of triglycerides (TGs), total cholesterol (TC), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) and significantly increased HDL. S. filicaulis improved ALT, AST, and ALP enzyme activity in diabetic rats. MDA levels decreased considerably with increasing activity of antioxidant enzymes, such as GST, SOD, CAT and GSH, in diabetic liver rats treated with S. filicaulis. Diabetic rats treated with MESFL and metformin exhibited upregulated mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Kelch-like ECH-associated protein 1 (Keap1) and protein tyrosine phosphatase 1B (PTP1B) mRNA expression in the liver was downregulated in diabetic rats treated with MESFL and metformin. In addition, MESFL downregulated the mRNA expression of caspase-3 in diabetic rats. CONCLUSION: It can be concluded from the data presented in this study that MESFL exerts a protective effect on diabetic rats due to its antidiabetic, antioxidant, antihyperlipidemic and antiapoptotic effects and may be considered a treatment for T2DM.


Assuntos
Diabetes Mellitus Experimental , Proteína 1 Associada a ECH Semelhante a Kelch , Fígado , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , PPAR gama , Extratos Vegetais , Folhas de Planta , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Ratos Wistar , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Masculino , Extratos Vegetais/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/química , Transdução de Sinais/efeitos dos fármacos , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Asteraceae/química , Estreptozocina , Hipoglicemiantes/farmacologia
3.
RSC Adv ; 14(27): 19362-19380, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38887650

RESUMO

This study explored the flavonoid-rich extract of beetroot (Beta vulgaris L.) for type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD) dual therapy by using in vitro and molecular simulation studies. Flavonoid-rich extracts of B. vulgaris fruit were evaluated for their antidiabetic and anti-alzheimic activities. Molecular docking and dynamic simulation were performed to identify potential bioactive flavonoids with dual therapeutic effects on T2D and AD. Flavonoid-rich extracts of B. vulgaris fruit (IC50 = 73.062 ± 0.480 µg mL-1) had moderate activity against α-amylase compared to the standard acarbose (IC50 = 27.104 ± 0.270 µg mL-1). Compared with acarbose, flavonoid-rich extracts of B. vulgaris fruit had appreciable activity against α-glucosidase (IC50 = 17.389 ± 0.436 µg mL-1) (IC50 = 37.564 ± 0.620 µg mL-1). For AChE inhibition, flavonoid-rich extracts of B. vulgaris fruit exhibited (p < 0.0001) inhibitory activity (IC50 = 723.260 ± 5.466 µg mL-1), albeit weaker than that of the standard control, galantamine (IC50 = 27.950 ± 0.122 µg mL-1). Similarly, flavonoid-rich extracts of B. vulgaris fruit showed considerable (p < 0.0001) inhibitory effects on BChE (IC50 = 649.112 ± 0.683 µg mL-1). In contrast, galantamine (IC50 = 23.126 ± 0.683 µg mL-1) is more potent than the extracts of B. vulgaris fruit. Monoamine oxidase (MAO) activity increased in FeSO4-induced brain damage. In contrast, flavonoid-rich extracts of B. vulgaris fruit protected against Fe2+-mediated brain damage by suppressing MAO activity in a concentration-dependent manner. HPLC-DAD profiling of the extracts identified quercetrin, apigenin, rutin, myricetin, iso-quercetrin, p-coumaric acid, ferulic acid, caffeic acid, and gallic acid. Molecular docking studies revealed quercetrin, apigenin, rutin, iso-queretrin, and myricetin were the top docked bioactive flavonoids against the five top target proteins (α-amylase, α-glucosidase AchE, BchE, and MAO). Molecular dynamic simulations revealed that the complexes formed remained stable over the course of the simulation. Collectively, the findings support the prospect of flavonoid-rich extracts of B. vulgaris root functioning as a dual therapy for T2D and AD.

4.
Biochem Biophys Rep ; 38: 101735, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38799115

RESUMO

Diabetes is a group of medical conditions characterized by the body's inability to effectively control blood glucose levels, due to either insufficient insulin synthesis in type 1 diabetes or inadequate insulin sensitivity in type 2 diabetes. According to this research, the PI3K/AKT pathway of Ocimum gratissimum leaf flavonoid-rich extracts in streptozotocin-induced diabetic rats was studied. We purchased and used a total of forty (40) male Wistar rats for the study. We divided the animals into five (5) different groups: normal control (Group A), diabetic control (Group B), low dose (150 mg/kg body weight) of Ocimum gratissimum flavonoid-rich leaf extract (LDOGFL) (Group C), high dose (300 mg/kg body weight) of Ocimum gratissimum flavonoid-rich leaf extract (HDOGFL) (Group D), and 200 mg/kg of metformin (MET) (Group E). Streptozotocin induced all groups except Group A, which serves as the normal control group. The experiment lasted for 21 days, following which we sacrificed the animals and harvested their brains for biochemical analysis on the 22nd day. We carried out an analysis that included reduced glutathione (GSH), glutathione transferases (GST), catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), along with GLUT4, MDA, pro-inflammatory cytokines, NO, neurotransmitters, cholinergic enzyme activities, cardiolipin, and the gene expression of PI3K/AKT. The obtained result indicates that the flavonoid-rich extracts of O. gratissimum significantly enhanced the levels of GSH, GST, CAT, GPx, and SOD, as well as GLUT4 and cardiolipin. The levels of GSH, GST, CAT, GPx, and SOD, as well as GLUT4 and cardiolipin, were significantly increased by gratissimum. Moreover, the extracts decrease the levels of MDA, pro-inflammatory cytokines, NO, neurotransmitters, and cholinergic enzyme activities. Additionally, the flavonoid-rich extracts of O. gratissimum significantly improved the AKT and PI3K gene expressions in diabetic rats. gratissimum had their AKT and PI3K gene expressions significantly (p < 0.05) improved. The findings indicate that O. gratissimum leaf flavonoids have the potential to treat diabetes mellitus. gratissimum leaf flavonoids possess therapeutic potential in themselves and can be applied in the management of diabetes mellitus. Although further analysis can be carried out in terms of isolating, profiling, or purifying the active compounds present in the plant's extract.

5.
Biochem Biophys Rep ; 38: 101698, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38577271

RESUMO

The mitophagy process, a type of macroautophagy, is the targeted removal of mitochondria. It is a type of autophagy exclusive to mitochondria, as the process removes defective mitochondria one by one. Mitophagy serves as an additional level of quality control by using autophagy to remove superfluous mitochondria or mitochondria that are irreparably damaged. During spermatogenesis, mitophagy can influence cell homeostasis and participates in a variety of membrane trafficking activities. Crucially, it has been demonstrated that defective mitophagy can impede spermatogenesis. Despite an increasing amount of evidence suggesting that mitophagy and mitochondrial dynamics preserve the fundamental level of cellular homeostasis, little is known about their role in developmentally controlled metabolic transitions and differentiation. It has been observed that male infertility is a result of mitophagy's impact on sperm motility. Furthermore, certain proteins related to autophagy have been shown to be present in mammalian spermatozoa. The mitochondria are the only organelle in sperm that can produce reactive oxygen species and finally provide energy for sperm movement. Furthermore, studies have shown that inhibited autophagy-infected spermatozoa had reduced motility and increased amounts of phosphorylated PINK1, TOM20, caspase 3/7, and AMPK. Therefore, in terms of reproductive physiology, mitophagy is the removal of mitochondria derived from sperm and the following preservation of mitochondria that are exclusively maternal.

6.
PLoS One ; 19(4): e0301992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640098

RESUMO

BACKGROUND AND OBJECTIVE: Diabetic neuropathy (DN) is a complex type of diabetes. The underlying cause of diabetic nephropathy remains unclear and may be due to a variety of pathological conditions resulting in kidney failure. This study examines the protective effect of the methanolic extract of Spilanthes filicaulis leaves (MESFL) in fructose-fed streptozotocin (STZ)-induced diabetic nephropathy and the associated pathway. METHODS: Twenty-five rats were equally divided randomly into five categories: Control (C), diabetic control, diabetic + metformin (100 mg/kg), diabetic + MESFL 150 mg/kg bw, and diabetic + MESFL 300 mg/kg bw. After 15 days, the rats were evaluated for fasting blood glucose (FBG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), urea, uric acid, serum creatinine, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (MDA). Gene expression levels of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP response element-binding (CREB), cFOS and the antiapoptotic protein Bcl-2 were examined. RESULTS: We observed that MESFL at 150 and 300 mg/kg bw significantly downregulated the protein expression of cAMP, PKA, CREB, and cFOS and upregulated the Bcl-2 gene, suggesting that the nephroprotective action of MESFL is due to the suppression of the cAMP/PKA/CREB/cFOS signaling pathway. In addition, MESFL increases SOD and CAT activities and GSH levels, reduces MDA levels, and reduces renal functional indices (ALP, urea, uric acid, and creatinine). CONCLUSION: Therefore, our results indicate that MESFL alleviates the development of diabetic nephropathy via suppression of the cAMP/PKA/CREB/cFOS pathways.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ratos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/metabolismo , Estreptozocina/farmacologia , Rim/patologia , Ácido Úrico/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Diabetes Mellitus/patologia
7.
Sci Rep ; 14(1): 4602, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409312

RESUMO

Promoting the intake of foods rich in vitamin A is key to combating the increase in vitamin A deficiency. This research focused on the utilization of orange-fleshed sweet potatoes (a tuber-based food), cowpea (a pulse), and ripe bananas (a fruit) for the production of flour mix as a means to reduce Vitamin A deficiency in children. Different ratios of sweet potato-cowpea-banana (PCB) mix, resulting in 8 different blended samples, were optimized. The flour mix was evaluated for its overall acceptability, vitamin A content, beta-carotene, and other nutritional and functional properties. The panelists rated the sweet potato-cowpea banana blends labeled PCB8 (60% OFSP, 30% cowpea, 5% ripe banana flour, and 5% sugar) as most preferred and acceptable with average scores of 8.96 points for color, 8.75 points for flavor, 8.88 points for appearance, 8.33 points for taste, 8.07 points for texture, and 8.39 points for overall acceptability on a 9-point hedonic scale. The vitamin A and beta-carotene contents ranged 7.62 to 8.35 mg/100 g and 0.15-0.17 mg/100 g for all blends. A significant difference in the functional properties of the flour mix were observed with an increase in the ratio of sweet potato flour addition. Findings from this study show that the flour mix PCB4 (65% sweet potato, 30% cowpea, and 5% ripe banana flour) was acceptable (8.15) and is recommended based on its vitamin A content (8.35 mg/100 g), nutritional properties, and functional properties. The study showed that locally available food commodities have good nutritional value that will help reduce vitamin A deficiency in children.


Assuntos
Citrus sinensis , Ipomoea batatas , Musa , Vigna , Deficiência de Vitamina A , Criança , Humanos , Vitamina A , beta Caroteno , Farinha
8.
J Biochem Mol Toxicol ; 38(1): e23579, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926918

RESUMO

Exposure to the herbicide atrazine has been shown to have deleterious effects on human and animal reproduction. To determine whether atrazine influences the brain-pituitary-testicular axis directly or indirectly, the present study examined the toxic effects of atrazine on fertility potential by assessing gonadal hormones, testicular function indices, sperm quality, and oxido-inflammatory markers in rats. Twelve animals were grouped into two groups; control and atrazine. The control group received oral administration of olive oil (2 mL/kg), while the atrazine group received 120 mg/kg of atrazine. Treatments were daily and lasted for 7 days. Upon treatment cessation, rats were necropsied for biochemical and histopathological analyses. The biochemical function indices in the rat brain, testis, and epididymis decreased significantly in the atrazine group. Atrazine exposure led to decreases in gonadal hormonal concentrations, semen quality parameters, and testicular function indices compared with the control. Furthermore, there was a marked increase in oxidative stress and inflammatory markers as well as degeneration of the histo-architecture in atrazine-treated rats. Overall, atrazine exposure impaired sperm quality, led to increased inflammation and oxidative stress, and decreased the activity of the brain-pituitary-testicular axis via endocrine disruption.


Assuntos
Atrazina , Testículo , Humanos , Ratos , Masculino , Animais , Testículo/metabolismo , Atrazina/toxicidade , Atrazina/metabolismo , Análise do Sêmen , Ratos Wistar , Sêmen , Espermatozoides , Estresse Oxidativo , Encéfalo
9.
J Biomol Struct Dyn ; 42(1): 101-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36974933

RESUMO

The emergence of varying levels of resistance to currently available antimalarial drugs significantly threatens global health. This factor heightens the urgency to explore bioactive compounds from natural products with a view to discovering and developing newer antimalarial drugs with novel mode of actions. Therefore, we evaluated the inhibitory effects of sixteen phytocompounds from Cymbopogon citratus leaf extract against Plasmodium falciparum drug targets such as P. falciparum circumsporozoite protein (PfCSP), P. falciparum merozoite surface protein 1 (PfMSP1) and P. falciparum erythrocyte membrane protein 1 (PfEMP1). In silico approaches including molecular docking, pharmacophore modeling and 3D-QSAR were adopted to analyze the inhibitory activity of the compounds under consideration. The molecular docking results indicated that a compound swertiajaponin from C. citratus exhibited a higher binding affinity (-7.8 kcal/mol) to PfMSP1 as against the standard artesunate-amodiaquine (-6.6 kcal/mol). Swertiajaponin also formed strong hydrogen bond interactions with LYS29, CYS30, TYR34, ASN52, GLY55 and CYS28 amino acid residues. In addition, quercetin another compound from C. citratus exhibited significant binding energies -6.8 and -8.3 kcal/mol with PfCSP and PfEMP1, respectively but slightly lower than the standard artemether-lumefantrine with binding energies of -7.4 kcal/mol against PfCSP and -8.7 kcal/mol against PfEMP1. Overall, the present study provides evidence that swertiajaponin and other phytomolecules from C. citratus have modulatory properties toward P. falciparum drug targets and thus may warrant further exploration in early drug discovery efforts against malaria. Furthermore, these findings lend credence to the folkloric use of C. citratus for malaria treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Cymbopogon , Malária Falciparum , Malária , Antimaláricos/química , Cymbopogon/química , Simulação de Acoplamento Molecular , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Simulação por Computador , Extratos Vegetais/farmacologia , Extratos Vegetais/química
10.
Lancet Child Adolesc Health ; 8(1): 17-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000380

RESUMO

BACKGROUND: Air pollution is the second largest risk to health in Africa, and children with asthma are particularly susceptible to its effects. Yet, there is a scarcity of air pollution exposure data from cities in sub-Saharan Africa. We aimed to identify potential exposure reduction strategies for school children with asthma living in urban areas in sub-Saharan Africa. METHODS: This personal exposure study was part of the Achieving Control of Asthma in Children in Africa (ACACIA) project. Personal exposure to particulate matter (PM) was monitored in school children in six cities in sub-Saharan Africa (Blantyre, Malawi; Durban, South Africa; Harare, Zimbabwe; Kumasi, Ghana; Lagos, Nigeria; and Moshi, Tanzania). Participants were selected if they were aged 12-16 years and had symptoms of asthma. Monitoring was conducted between June 21, and Nov 26, 2021, from Monday morning (approximately 1000 h) to Friday morning (approximately 1000 h), by use of a bespoke backpack with a small air pollution monitoring unit with an inbuilt Global Positioning System (GPS) data logger. Children filled in a questionnaire detailing potential sources of air pollution during monitoring and exposures were tagged into three different microenvironments (school, commute, and home) with GPS coordinates. Mixed-effects models were used to identify the most important determinants of children's PM2·5 (PM <2·5 µm in diameter) exposure. FINDINGS: 330 children were recruited across 43 schools; of these, 297 had valid monitoring data, and 1109 days of valid data were analysed. Only 227 (20%) of 1109 days monitored were lower than the current WHO 24 h PM2·5 exposure health guideline of 15 µg/m3. Children in Blantyre had the highest PM2·5 exposure (median 41·8 µg/m3), whereas children in Durban (16·0 µg/m3) and Kumasi (17·9 µg/m3) recorded the lowest exposures. Children had significantly higher PM2·5 exposures at school than at home in Kumasi (median 19·6 µg/m3vs 14·2 µg/m3), Lagos (32·0 µg/m3vs 18·0 µg/m3), and Moshi (33·1 µg/m3vs 23·6 µg/m3), while children in the other three cities monitored had significantly higher PM2·5 exposures at home and while commuting than at school (median 48·0 µg/m3 and 43·2 µg/m3vs 32·3 µg/m3 in Blantyre, 20·9 µg/m3 and 16·3 µg/m3vs 11·9 µg/m3 in Durban, and 22·7 µg/m3 and 25·4 µg/m3vs 16·4 µg/m3 in Harare). The mixed-effects model highlighted the following determinants for higher PM2·5 exposure: presence of smokers at home (23·0% higher exposure, 95% CI 10·8-36·4), use of coal or wood for cooking (27·1%, 3·9-56·3), and kerosene lamps for lighting (30·2%, 9·1-55·2). By contrast, 37·2% (95% CI 22·9-48·2) lower PM2·5 exposures were found for children who went to schools with paved grounds compared with those whose school grounds were covered with loose dirt. INTERPRETATION: Our study suggests that the most effective changes to reduce PM2·5 exposures in these cities would be to provide paving in school grounds, increase the use of clean fuel for cooking and light in homes, and discourage smoking within homes. The most efficient way to improve air quality in these cities would require tailored interventions to prioritise different exposure-reduction policies in different cities. FUNDING: UK National Institute for Health and Care Research.


Assuntos
Poluição do Ar em Ambientes Fechados , Asma , Criança , Humanos , Material Particulado/análise , Cidades , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Nigéria , África do Sul , Zimbábue , Asma/epidemiologia
11.
J Biomol Struct Dyn ; : 1-22, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084747

RESUMO

This study examines the nutritional composition, phytochemical profiling, and antioxidant, antidiabetic, and anti-inflammatory potential of a methanolic extract of Spilanthes filicaulis leaves (MESFL) via in vitro, ex vivo, and in silico studies. In vitro antioxidant, antidiabetic, and anti-inflammatory activities were examined. In the ex vivo study, liver tissues were subjected to FeSO4-induced oxidative damage and treated with varying concentrations of MESFL. MESFL contains a reasonable amount of nitrogen-free extract, moisture, ash content, crude protein, and fat, with a lesser amount of crude fiber. According to GC-MS analysis, MESFL contains ten compounds, the most abundant of which are 13-octadecenal and Ar-tumerone. In this study, MESFL demonstrated anti-inflammatory activities via membrane stabilizing properties, proteinase inhibition, and inhibition of protein denaturation (IC50 = 72.75 ± 11.06 µg/mL). MESFL also strongly inhibited both α-amylase (IC50 = 307.02 ± 4.25 µg/mL) and α-glucosidase (IC50 = 215.51 ± 0.47 µg/mL) activities. Our findings also showed that FeSO4-induced tissue damage decreased the levels of GSH, SOD, and CAT activities while increasing the levels of MDA. In contrast, treatment with MESFL helped to restore these parameters to near-normal levels, which signifies that MESFL has great potential to address complications from oxidative stress. Furthermore, the in silico interaction of the GCMS-identified phytochemicals with the active sites of α-amylase and α-glucosidase via molecular and ensembled-based docking displayed strong binding affinities of Ar-tumerone and 4-hydroxy-3-methylacetophenone to α-amylase and α-glucosidase, respectively. Taken together, the biological activities of MESFL might be a result of the effects of these secondary metabolites.Communicated by Ramaswamy H. Sarma.

12.
J Biomol Struct Dyn ; : 1-15, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109128

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) has been identified as a promising drug target for the development of diabetes medications via an inhibition mechanism. Using a computational approach, this study investigates the binding mechanism of lead optimized natural compounds from Allium sativum against the human PTP1B. The molecular docking, induced-fit docking, and binding free energy calculations were analyzed using Schrödinger Suite 2021-2. MD simulation, and gene enrichment analysis was achieved via the Desmond module of Schrödinger to identify best compounds as inhibitors against PTP1B in diabetes management. The docking scores of the lead optimized compounds were good; 5280443_121 from apigenin had the best binding score of -9.345 kcal/mol, followed by 5280443_129 with a binding score of -9.200 kcal/mol, and 5280863_177 from kaempferol had a binding score of -8.528 kcal/mol, followed by 5280863_462 with a binding score of -8.338 kcal/mol. The top two lead optimized compounds, docked better than the standard PTP1B inhibitor (-7.155 kcal/mol), suggesting them as potent inhibitors than the standard PTP1B inhibitor. The outcomes of the induced-fit docking were consistent with the increased binding affinity used in the Glide computation of the five conformed poses between the derivatives (5280443_121, 5280443_129, 5280863_177, and 5280863_462) and the protein (PTP1B). Based on the binding fee energies (MM-GBSA), the lead optimized compounds from kaempferol exhibited more stability than those from apigenin. In the pharmacophore development, all the models exhibit good results across the different metrics. The best performing model with five of five matches on a 1.34 and 1.33 phase score was DDRRR_1, DDRRR_2, and DDDRR_1. The average BEDROC value (= 160.9) was 1, while the average EF 1% value across all models was 101. There were no substantial conformational modifications during the MD simulation process, indicating that the apigenin derivatives (5280443_121) was stable in the protein's active site in 100 ns. IGF1R, EGFR, INSR, PTPN1, SRC, JAK2, GRB2, BCAR1, and IRS1 are among the 11 potential targets found in the protein-protein interaction (PPI) of A. sativum against PTP1B that may be important in A. sativum's defense against PTP1B. Sixty-four (64) pathways were found by KEGG pathway enrichment analysis to be potentially involved in the anti-PTP1B of A. sativum. Consequently, data obtained indicates the effectiveness of the in silico studies in identifying potential lead compounds in A. sativum against PTP1B target.Communicated by Ramaswamy H. Sarma.

13.
J Biomol Struct Dyn ; : 1-21, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112300

RESUMO

The nutritional as well as beneficial effects of the Artocarpus communis seed on metabolic syndrome complications have not been studied. In this research, the aim was to investigate the nutritional composition and beneficial effects of Artocarpus communis seeds' phytoconstituents on the p53 core, fat mass and obesity-associated (FTO) protein and cytochrome P450 CYP11A1 domains. The elements and phytochemicals in the seed were determined through atomic absorption spectroscopy assay and gas chromatography-mass spectrometry (GC-MS) analysis, respectively. Also, the compounds detected were docked to the p53 core, FTO protein and cytochrome P450 CYP11A1 domains protein. Artocarpus communis seed contains sodium (7.824 ± 0.0134 ppm), magnesium (10.187 ± 0.0239 ppm) and iron (1.924 ± 0.0017), while zinc and cadmium were undetected. Phenolics and flavonoids were the most abundant phytochemicals in the seed. Phytoconstituents, such as pentadecanoic acid, hexadecanoic acid and methyl ester, possessing different therapeutic effects were identified via GC-MS analysis. In A. communis seed, 3-methyl-4-nitro-5-(1-pyrazolyl) pyrazole and phenanthrene were able to bind more peculiarly and specifically to the p53 core, FTO protein and cytochrome P450 CYP11A1 domains. One of the important processes that were hypothesized for the recovery of metabolic syndrome in affected victims is shown by the molecular dynamics analysis, which shows that the binding of these chemicals to the targeted structure stabilized the proteins. Therefore, Artocarpus communis seeds could be a new strategy for the management of metabolic syndrome.Communicated by Ramaswamy H. Sarma.

14.
Molecules ; 28(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37959844

RESUMO

This study aimed to examine the therapeutic activity of the cinnamic acid derivative KAD-7 (N'-(2,4-dichlorobenzylidene)-3-(4-methoxyphenyl) acrylohydrazide) on Fe2+-induced oxidative hepatic injury via experimental and computational models. In addition, the role of ATPase and ectonucleoside triphosphate diphosphohydrolase (ENTPDase) in the coordination of cellular signals is speculated upon to proffer suitable therapeutics for metabolic stress disorder upon their inhibition. While we know little about therapeutics with flexible dual inhibitors for these protein targets, this study was designed to screen KAD-7's (N'-(2,4-dichlorobenzylidene)-3-(4-methoxyphenyl) acrylohydrazide) inhibitory potential for both protein targets. We induced oxidative hepatic damage via the incubation of hepatic tissue supernatant with 0.1 mM FeSO4 for 30 min at 37 °C. We achieved the treatment by incubating the hepatic tissues with KAD-7 under the same conditions. The catalase (CAT), glutathione (GSH), malondialdehyde (MDA), ATPase, and ENTPDase activity were all measured in the tissues. We predicted how the drug candidate would work against ATPase and ENTPDase targets using molecular methods. When hepatic injury was induced, there was a significant decrease in the levels of the GSH, CAT, and ENTPDase (p < 0.05) activities. In contrast, we found a noticeable rise in the MDA levels and ATPase activity. KAD-7 therapy resulted in lower levels of these activities overall (p < 0.05), as compared to the control levels. We found the compound to have a strong affinity for ATPase (-7.1 kcal/mol) and ENTPDase (-7.4 kcal/mol), and a better chemical reactivity than quercetin. It also met all drug-likeness parameters. Our study shows that KAD-7 can protect the liver from damage caused by FeSO4 by reducing oxidative stress and purinergic actions. Our studies indicate that KAD-7 could be developed as a therapeutic option since it can flexibly inhibit both ATPase and ENTPDase.


Assuntos
Antioxidantes , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cinamatos/farmacologia , Cinamatos/metabolismo , Glutationa/metabolismo , Fígado/metabolismo , Adenosina Trifosfatases/metabolismo
15.
Molecules ; 28(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894548

RESUMO

BACKGROUND: Alstonia boonei, belonging to the family Apocynaceae, is one of the best-known medicinal plants in Africa and Asia. Stem back preparations are traditionally used as muscle relaxants. This study investigated the antispasmodic properties of Alstonia boonei Stem back and its constituents. METHOD: The freeze-dried aqueous Stem back extract of A. boonei, as well as dichloromethane (DCM), ethyl acetate, and aqueous fractions, were evaluated for their antispasmodic effect via the ex vivo method. Two compounds were isolated from the DCM fraction using chromatographic techniques, and their antispasmodic activity was evaluated. An in silico study was conducted by evaluating the interaction of isolated compounds with human PPARgamma-LBD and human carbonic anhydrase isozyme. RESULTS: The Stem back crude extract, DCM, ethyl acetate, and aqueous fractions showed antispasmodic activity on high-potassium-induced (K+ 80 mM) contractions on isolated rat ileum with IC50 values of 0.03 ± 0.20, 0.02 ± 0.05, 0.03 ± 0.14, and 0.90 ± 0.06 mg/mL, respectively. The isolated compounds from the DCM fraction were ß-amyrin and boonein, with only boonein exhibiting antispasmodic activity on both high-potassium-induced (IC50 = 0.09 ± 0.01 µg/mL) and spontaneous (0.29 ± 0.05 µg/mL) contractions. However, ß-amyrin had a stronger interaction with the two proteins during the simulation. CONCLUSION: The isolated compounds boonein and ß-amyrin could serve as starting materials for the development of antispasmodic drugs.


Assuntos
Alstonia , Ratos , Animais , Humanos , Alstonia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Parassimpatolíticos/farmacologia , Água , Potássio
16.
Front Pharmacol ; 14: 1235810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547334

RESUMO

Introduction: This study aimed to investigate the chemical profile of GC-MS, antioxidant, anti-diabetic, and anti-inflammatory activities of the ethyl acetate fraction of Spilanthes filicaulis leaves (EFSFL) via experimental and computational studies. Methods: After inducing oxidative damage with FeSO4, we treated the tissues with different concentrations of EFSFL. An in-vitro analysis of EFSFL was carried out to determine its potential for antioxidant, anti-diabetic, and anti-inflammatory activities. We also measured the levels of CAT, SOD, GSH, and MDA. Results and discussion: EFSFL exhibited anti-inflammatory properties through membrane stabilizing properties (IC50 = 572.79 µg/ml), proteinase inhibition (IC50 = 319.90 µg/ml), and inhibition of protein denaturation (IC50 = 409.88 µg/ml). Furthermore, EFSFL inhibited α-amylase (IC50 = 169.77 µg/ml), α-glucosidase (IC50 = 293.12 µg/ml) and DPP-IV (IC50 = 380.94 µg/ml) activities, respectively. Our results indicated that induction of tissue damage reduced the levels of GSH, SOD, and CAT activities, and increased MDA levels. However, EFSFL treatment restores these levels to near normal. GC-MS profiling shows that EFSFL contains 13 compounds, with piperine being the most abundant. In silico interaction of the phytoconstituents using molecular and ensembled-based docking revealed strong binding tendencies of two hit compounds to DPP IV (alpha-caryophyllene and piperine with a binding affinity of -7.8 and -7.8 Kcal/mol), α-glucosidase (alpha-caryophyllene and piperine with a binding affinity of -9.6 and -8.9 Kcal/mol), and to α-amylase (piperine and Benzocycloheptano[2,3,4-I,j]isoquinoline, 4,5,6,6a-tetrahydro-1,9-dihydroxy-2,10-dimethoxy-5-methyl with a binding affinity of -7.8 and -7.9 Kcal/mol), respectively. These compounds also presented druggable properties with favorable ADMET. Conclusively, the antioxidant, antidiabetic, and anti-inflammatory activities of EFSFL could be due to the presence of secondary metabolites.

17.
Toxicol Rep ; 10: 690-705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396845

RESUMO

Background: Cannabis and cannabinoids affect almost every system of the body and exert systemic effects such as alterations in memory and cognitive functions, neurotransmission impediment, as well as obstruction of endocrine and reproductive system functions. Reproduction is a complicated phenomenon that integrates biological, psychological and behavioural aspects, hence susceptible to intracellular and extracellular modulations by numerous chemicals and toxicants like cannabis. Aim: The effects of early-life exposure to cannabis on reproductive function biomarkers and genes were investigated in male and female Wistar rats in this study. Method: An initial computational analysis (molecular docking and induced fit docking) of some cannabinoids with reproductive enzymes; androgen and follicle stimulating hormone receptors was conducted. Overall, cannabichromene (CBC) had the best IFD scores and binding free energies for the two proteins studied and it interacted with notable amino acids within their active sites. Subsequently, forty (40) Wistar rats, 20 male and 20 female (24-28 days old, weighing 20-28 ± 2 g) were divided into two groups each and orally administered CBC for 21 days. Penile tissues, testes and ovaries, were collected for biochemical analysis (hormonal assays, enzyme activities, and metabolite concentrations), gene expressions, and histological evaluations. Results: Activities of arginase and phosphodiesterase-5 in the penile tissue were significantly increased, while nitric oxide and calcium levels were significantly (p < 0.05) decreased in the CBC-exposed groups relative to the control group. Semen analysis showed significantly more abnormalities and decreased concentration of spermatozoa in the CBC-exposed group compared to the control. Activities of 17ß-hydroxysteroid dehydrogenase and cholesterol level were decreased in both testes and ovaries of CBC-exposed groups. Furthermore, levels of testosterone, progesterone, luteinizing, and follicle-stimulating hormones were reduced in the serum of CBC rats. Moreover, relative expressions of androgen receptor and follicle-stimulating hormone receptor genes were significantly downregulated in the CBC-exposed groups. Histological evaluations revealed lesions, tubular necrosis, and cellular congestions in both the testes and ovaries. Conclusion: This study suggests that pre-puberty exposure to cannabis modulates reproductive functions via cannabichromene inhibition of steroidogenesis, stimulation of erectile dysfunction (modulation of intermediates and enzymes of the endothelial nitric oxide synthase (eNOS) pathway in the penile tissue), and downregulation of the expressions of genes associated with reproduction.

18.
Heliyon ; 9(7): e17700, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483802

RESUMO

The purpose of this study was to investigate the protective effect of Beta vulgaris leaf extract (BVLE) on Fe2+-induced oxidative testicular damage via experimental and computational models. Oxidative testicular damage was induced via incubation of testicular tissue supernatant with 0.1 mM FeSO4 for 30 min at 37 °C. Treatment was achieved by incubating the testicular tissues with BVLE under the same conditions. The catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and nitric oxide (NO) levels, acetylcholinesterase (AChE), sodium-potassium adenosine triphosphatase (Na+/K + ATPase), ecto-nucleoside triphosphate diphosphohydrolase (ENTPDase), glucose-6-phosphatase (G6Pase), and fructose-1,6-bisphosphatase (F-1,6-BPase) were all measured in the tissues. We identified the bioactive compounds present using high-performance liquid chromatography (HPLC). Molecular docking and dynamic simulations were done on all identified compounds using a computational approach. The induction of testicular damage (p < 0.05) decreased the activities of GSH, SOD, CAT, and ENTPDase. In contrast, induction of testicular damage also resulted in a significant increase in MDA and NO levels and an increase in ATPase, G6Pase, and F-1,6-BPase activities. BVLE treatment (p < 0.05) reduced these levels and activities compared to control levels. An HPLC investigation revealed fifteen compounds in BVLE, with quercetin being the most abundant. The molecular docking and MDS analysis of the present study suggest that schaftoside may be an effective allosteric inhibitor of fructose 1,6-bisphosphatase based on the interacting residues and the subsequent effect on the dynamic loop conformation. These findings indicate that B. vulgaris can protect against Fe2+-induced testicular injury by suppressing oxidative stress, acetylcholinesterase, and purinergic activities while regulating carbohydrate dysmetabolism.

19.
Prev Nutr Food Sci ; 28(2): 108-120, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37416797

RESUMO

In Nigeria, the use of microorganisms for food product modulation, development, and commercialization through biotechnological innovations remains unexplored and unaccepted. The microbiome-based sustainable innovation in the production process of Nigerian indigenous food requires a vigorous drive toward responsible consumption and production. The production process of locally fermented beverages and foods culturally varies in terms of fermentation techniques and is characterized by the distinctiveness of the microbiomes used for food and beverage production. This review was conducted to present the use of microbiome, its benefits, and utility as well as the perspectives toward and mediatory roles of biotechnology on the processing of locally fermented foods and their production in Nigeria. With the current concerns on global food insecurity, the utilization of modern molecular and genetic sciences to improve various rural food processing technologies to acceptable foreign exchange and socioeconomic scales has been gaining attention. Thus, further research on the various types of processing techniques for locally fermented foods using microbiomes in Nigeria is needed, with a focus on yield optimization using advanced techniques. This study demonstrates the adaptability of processed foods locally produced in Nigeria for the beneficial control of microbial dynamics, optimal nutrition, therapeutic, and organoleptic characteristics.

20.
Toxicol Rep ; 10: 448-462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125147

RESUMO

Infertility has been a major issue in our society for many years, and millions of couples all over the world are still experiencing it. There are several reasons for and causes of infertility in both men and women. Recent studies have shown that apoptosis, inflammation, and oxidative stress contribute immensely to infertility. The data regarding this report were obtained through a thorough review of scientific articles published in various databases, including Elsevier, Web of Science, PubMed, Scopus, and Google Scholar. Furthermore, PhD and MSc theses were also reviewed when compiling the data. Apoptosis, also known as "programmed cell death," is a natural and harmless process that occurs in human beings. Although it can become harmful if altered, Inflammation, on the other hand, is the body's reaction to detrimental stimuli caused by toxic substances or compounds, while oxidative stress is a phenomenon that results in an imbalance between the generation and aggregation of reactive oxygen species (ROS) in the cells against antioxidants. These three factors interchangeably bring about several reproductive disorders in the body, resulting in infertility. This review aims at discussing how apoptosis, inflammation, and oxidative stress play a role in human infertility. Availability of data and material: The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...