Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 19377, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168851

RESUMO

The nematic phase in iron based superconductors (IBSs) has attracted attention with a notion that it may provide important clue to the superconductivity. A series of angle-resolved photoemission spectroscopy (ARPES) studies were performed to understand the origin of the nematic phase. However, there is lack of ARPES study on LaFeAsO nematic phase. Here, we report the results of ARPES studies of the nematic phase in LaFeAsO. Degeneracy breaking between the [Formula: see text] and [Formula: see text] hole bands near the [Formula: see text] and M point is observed in the nematic phase. Different temperature dependent band splitting behaviors are observed at the [Formula: see text] and M points. The energy of the band splitting near the M point decreases as the temperature decreases while it has little temperature dependence near the [Formula: see text] point. The nematic nature of the band shift near the M point is confirmed through a detwin experiment using a piezo device. Since a momentum dependent splitting behavior has been observed in other iron based superconductors, our observation confirms that the behavior is a universal one among iron based superconductors.

2.
Nat Commun ; 7: 11116, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27050161

RESUMO

A superconducting transition temperature (Tc) as high as 100 K was recently discovered in one monolayer FeSe grown on SrTiO3. The discovery ignited efforts to identify the mechanism for the markedly enhanced Tc from its bulk value of 8 K. There are two main views about the origin of the Tc enhancement: interfacial effects and/or excess electrons with strong electron correlation. Here, we report the observation of superconductivity below 20 K in surface electron-doped bulk FeSe. The doped surface layer possesses all the key spectroscopic aspects of the monolayer FeSe on SrTiO3. Without interfacial effects, the surface layer state has a moderate Tc of 20 K with a smaller gap opening of 4.2 meV. Our results show that excess electrons with strong correlation cannot induce the maximum Tc, which in turn reveals the need for interfacial effects to achieve the highest Tc in one monolayer FeSe on SrTiO3.

3.
Nat Mater ; 14(2): 210-4, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25384167

RESUMO

A fundamental and unconventional characteristic of superconductivity in iron-based materials is that it occurs in the vicinity of two other instabilities. In addition to a tendency towards magnetic order, these Fe-based systems have a propensity for nematic ordering: a lowering of the rotational symmetry while time-reversal invariance is preserved. Setting the stage for superconductivity, it is heavily debated whether the nematic symmetry breaking is driven by lattice, orbital or spin degrees of freedom. Here, we report a very clear splitting of NMR resonance lines in FeSe at Tnem = 91 K, far above the superconducting Tc of 9.3 K. The splitting occurs for magnetic fields perpendicular to the Fe planes and has the temperature dependence of a Landau-type order parameter. Spin-lattice relaxation rates are not affected at Tnem, which unequivocally establishes orbital degrees of freedom as driving the nematic order. We demonstrate that superconductivity competes with the emerging nematicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...