Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 4537, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382104

RESUMO

In organic hole-transporting material (HTM)-based p-i-n planar perovskite solar cells, which have simple and low-temperature processibility feasible to flexible devices, the incident light has to pass through the HTM before reaching the perovskite layer. Therefore, photo-excited state of organic HTM could become important during the solar cell operation, but this feature has not usually been considered for the HTM design. Here, we prove that enhancing their property at their photo-excited states, especially their transition dipole moments, can be a methodology to develop high efficiency p-i-n perovskite solar cells. The organic HTMs are designed to have high transition dipole moments at the excited states and simultaneously to preserve those property during the solar cell operation by their extended lifetimes through the excited-state intramolecular proton transfer process, consequently reducing the charge recombination and improving extraction properties of devices. Their UV-filtering ability is also beneficial to enhance the photostability of devices.

2.
Nanoscale ; 9(37): 13983-13989, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28920127

RESUMO

See-through perovskite solar cells with high efficiency and iridescent colors are demonstrated by employing a multilayer dielectric mirror. A certain amount of visible light is used for wide color gamut semitransparent color generation, which can be easily tuned by changing an angle of incidence, and a wide range of visible light is efficiently reflected back toward a photoactive layer of the perovskite solar cells by the dielectric mirror for highly efficient light-harvesting performance, thus achieving 10.12% power conversion efficiency. We also rigorously examine how the number of pairs in the multilayer dielectric mirror affects optical properties of the colored semitransparent perovskite solar cells. The described approach can open the door to a large number of applications such as building-integrated photovoltaics, self-powered wearable electronics and power-generating color filters for energy-efficient display systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA