Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38984675

RESUMO

A 32-year-old man, who was treated for T-cell lymphoma, presented in cardiac arrest. He had been treated for heart failure with reduced ejection fraction. Veno-arterial extracorporeal membrane oxygenation was initiated immediately. We diagnosed him as non-ST elevated myocardial infarction. Coronary angiography demonstrated the occlusion of the trifurcation in the proximal left anterior descending artery (LAD). We failed to advance the first guidewire into the distal LAD by angio-based conventional wiring. Intravascular ultrasonography (IVUS) of the proximal diagonal branch revealed two diaphragms separating the distal lumen without connection, which looks like lotus root-like appearance. We quickly penetrated the plaque using IVUS-based real-time 3D wiring using the tip detection method. The contrast injection via the microcatheter showed the distal diagonal branch (D2). After the balloon dilation in D2, IVUS image revealed a torn plaque between D2 and the distal LAD. Subsequently we advanced the guidewire to the distal LAD using IVUS-based real-time 3D wiring using the tip detection method through the tear of the plaque. Finally, we successfully performed the revascularization of LAD in a preferable procedure time. The patient recovered well and was discharged 39 days after cardiac arrest. This case highlights the efficacy of IVUS-based real-time 3D wiring using the tip detection method even in the emergent and challenging situation.

2.
Environ Sci Technol ; 58(10): 4670-4679, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38411077

RESUMO

Bacteria utilize electron conduction in their communities to drive their metabolism, which has led to the development of various environmental technologies, such as electrochemical microbial systems and anaerobic digestion. It is challenging to measure the conductivity among bacterial cells when they hardly form stable biofilms on electrodes. This makes it difficult to identify the biomolecules involved in electron conduction. In the present study, we aimed to identify c-type cytochromes involved in electron conduction in Shewanella oneidensis MR-1 and examine the molecular mechanisms. We established a colony-based bioelectronic system that quantifies bacterial electrical conductivity, without the need for biofilm formation on electrodes. This system enabled the quantification of the conductivity of gene deletion mutants that scarcely form biofilms on electrodes, demonstrating that c-type cytochromes, MtrC and OmcA, are involved in electron conduction. Furthermore, the use of colonies of gene deletion mutants demonstrated that flavins participate in electron conduction by binding to OmcA, providing insight into the electron conduction pathways at the molecular level. Furthermore, phenazine-based electron transfer in Pseudomonas aeruginosa PAO1 and flavin-based electron transfer in Bacillus subtilis 3610 were confirmed, indicating that this colony-based system can be used for various bacteria, including weak electricigens.


Assuntos
Flavinas , Shewanella , Eletroquímica , Flavinas/metabolismo , Elétrons , Citocromos/metabolismo , Transporte de Elétrons , Shewanella/química , Shewanella/genética , Shewanella/metabolismo
3.
Microorganisms ; 12(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38399661

RESUMO

In this study, we explored the extracellular electron transfer (EET) capabilities of two bacterial strains, OTU0001 and OTU0002, which are demonstrated in biofilm formation in mouse gut and the induction of autoimmune diseases like multiple sclerosis. OTU0002 displayed significant electrogenic behaviour, producing microbial current on an indium tin-doped oxide electrode surface, particularly in the presence of glucose, with a current density of 60 nA/cm2. The presence of cell-surface redox substrate potentially mediating EET was revealed by the redox-based staining method and electrochemical voltammetry assay. However, medium swapping analyses and the addition of flavins, a model redox mediator, suggest that the current production is dominated by soluble endogenous redox substrates in OTU0002. Given redox substrates were detected at the cell surface, the secreted redox molecule may interact with the cellular surface of OTU0002. In contrast to OTU0002, OTU0001 did not exhibit notable electrochemical activity, lacking cell-surface redox molecules. Further, the mixture of the two strains did not increase the current production from OTU0001, suggesting that OTU0001 does not support the EET mechanism of OTU0002. The present work revealed the coexistence of EET and non-EET capable pathogens in multi-species biofilm.

4.
Extremophiles ; 27(3): 28, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843723

RESUMO

A novel hyperthermophilic, heterotrophic archaeon, strain YC29T, was isolated from a deep-sea hydrothermal vent in the Mid-Okinawa Trough, Japan. Cells of strain YC29T were non-motile, irregular cocci with diameters of 1.2-3.0 µm. The strain was an obligatory fermentative anaerobe capable of growth on complex proteinaceous substrates. Growth was observed between 85 and 100 °C (optimum 90-95 °C), pH 4.9-6.4 (optimum 5.1), and in the presence of 1.4-4.0% (w/v) NaCl (optimum 3.0%). Inorganic carbon was required as a carbon source. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the family Pyrodictiaceae. The genome size was 2.02 Mbp with a G+C content of 49.4%. The maximum values for average nucleotide identity (ANI), average amino acid identity (AAI), and in silico DNA-DNA hybridization (dDDH) value of strain YC29T with relatives were 67.9% (with Pyrodictium abyssi strain AV2T), 61.1% (with Pyrodictium occultum strain PL-19T), and 33.8% (with Pyrolobus fumarii strain 1AT), respectively. Based on the phylogenetic, genomic, and phenotypic characteristics, we propose that strain YC29T represents a novel genus and species, Pyrofollis japonicus gen. nov., sp. (type strain YC29T = DSM 113394T = JCM 39171T).


Assuntos
Fontes Hidrotermais , Pyrodictiaceae , Pyrodictiaceae/genética , Filogenia , RNA Ribossômico 16S/genética , DNA , Carbono , Análise de Sequência de DNA , DNA Bacteriano , Água do Mar , Ácidos Graxos/química
5.
Nat Nanotechnol ; 18(12): 1492-1501, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37537274

RESUMO

Dynamic therapies have potential in cancer treatments but have limitations in efficiency and penetration depth. Here a membrane-integrated liposome (MIL) is created to coat titanium dioxide (TiO2) nanoparticles to enhance electron transfer and increase radical production under low-dose X-ray irradiation. The exoelectrogenic Shewanella oneidensis MR-1 microorganism presents an innate capability for extracellular electron transfer (EET). An EET-mimicking photocatalytic system is created by coating the TiO2 nanoparticles with the MIL, which significantly enhances superoxide anions generation under low-dose (1 Gy) X-ray activation. The c-type cytochromes-constructed electron channel in the membrane mimics electron transfer to surrounding oxygen. Moreover, the hole transport in the valence band is also observed for water oxidation to produce hydroxyl radicals. The TiO2@MIL system is demonstrated against orthotopic liver tumours in vivo.


Assuntos
Lipossomos , Shewanella , Elétrons , Fusão de Membrana , Transporte de Elétrons , Oxirredução
6.
Patterns (N Y) ; 4(8): 100827, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602222

RESUMO

[This corrects the article DOI: 10.1016/j.patter.2022.100610.].

7.
Artigo em Inglês | MEDLINE | ID: mdl-37540001

RESUMO

A novel mesophilic, obligately anaerobic, facultatively sulphur-reducing bacterium, designated strain IC12T, was isolated from a deep-sea hydrothermal field in the Mid-Okinawa Trough, Japan. The cells were Gram-negative, motile, short rods with a single polar flagellum. The ranges and optima of the growth temperature, NaCl concentration and pH of strain IC12T were 15-40 °C (optimum, 30-35 °C), 10-60 g l-1 (optimum, 20-30 g l-1) and pH 4.9-6.7 (optimum, pH 5.8), respectively. Yeast extract was utilized as a sole carbon and energy source for fermentative growth. Major fatty acids of strain IC12T were C14 : 0, C16 : 0 and C16 : 1 ω7. Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain IC12T was affiliated to the phylum Fusobacteriota and was most closely related to Ilyobacter insuetus VenChi2T (86.5 % sequence similarity). Strain IC12T contained a chromosome of 2.43 Mbp and a large plasmid of 0.30 Mbp. The G+C content of the genomic DNA was 26.4 mol%. The maximum values for average nucleotide identity and in silico DNA-DNA hybridization between strain IC12T and related strains of the phylum Fusobacteriota were 71.4 and 26.4 %, respectively. Phylogenomic, physiological and chemotaxonomic analyses indicate that strain IC12T represents a novel genus and species within the phylum Fusobacteriota, for which the name Haliovirga abyssi gen. nov., sp. nov. is proposed, with strain IC12T (= DSM 112164T=JCM 39166T) as the type strain. We also propose the family Haliovirgaceae fam. nov. to accommodate this novel genus.


Assuntos
DNA , Ácidos Graxos , Ácidos Graxos/química , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Bactérias Anaeróbias/genética
8.
Front Microbiol ; 14: 1179857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520355

RESUMO

The terrestrial serpentinite-hosted ecosystem known as "The Cedars" is home to a diverse microbial community persisting under highly alkaline (pH ~ 12) and reducing (Eh < -550 mV) conditions. This extreme environment presents particular difficulties for microbial life, and efforts to isolate microorganisms from The Cedars over the past decade have remained challenging. Herein, we report the initial physiological assessment and/or full genomic characterization of three isolates: Paenibacillus sp. Cedars ('Paeni-Cedars'), Alishewanella sp. BS5-314 ('Ali-BS5-314'), and Anaerobacillus sp. CMMVII ('Anaero-CMMVII'). Paeni-Cedars is a Gram-positive, rod-shaped, mesophilic facultative anaerobe that grows between pH 7-10 (minimum pH tested was 7), temperatures 20-40°C, and 0-3% NaCl concentration. The addition of 10-20 mM CaCl2 enhanced growth, and iron reduction was observed in the following order, 2-line ferrihydrite > magnetite > serpentinite ~ chromite ~ hematite. Genome analysis identified genes for flavin-mediated iron reduction and synthesis of a bacillibactin-like, catechol-type siderophore. Ali-BS5-314 is a Gram-negative, rod-shaped, mesophilic, facultative anaerobic alkaliphile that grows between pH 10-12 and temperatures 10-40°C, with limited growth observed 1-5% NaCl. Nitrate is used as a terminal electron acceptor under anaerobic conditions, which was corroborated by genome analysis. The Ali-BS5-314 genome also includes genes for benzoate-like compound metabolism. Anaero-CMMVII remained difficult to cultivate for physiological studies; however, growth was observed between pH 9-12, with the addition of 0.01-1% yeast extract. Anaero-CMMVII is a probable oxygen-tolerant anaerobic alkaliphile with hydrogenotrophic respiration coupled with nitrate reduction, as determined by genome analysis. Based on single-copy genes, ANI, AAI and dDDH analyses, Paeni-Cedars and Ali-BS5-314 are related to other species (P. glucanolyticus and A. aestuarii, respectively), and Anaero-CMMVII represents a new species. The characterization of these three isolates demonstrate the range of ecophysiological adaptations and metabolisms present in serpentinite-hosted ecosystems, including mineral reduction, alkaliphily, and siderophore production.

9.
Chem Commun (Camb) ; 59(51): 7947-7950, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37278309

RESUMO

Spinel oxides are promising for high-potential cathode materials of photo-rechargeable batteries. However, LiMn1.5M0.5O4 (M = Mn) shows a rapid degradation during charge/discharge under the illumination of UV-visible light. Here, we investigate various spinel-oxide materials by modifying the composition (M = Fe, Co, Ni, Zn) to demonstrate photocharging in a water-in-salt aqueous electrolyte. LiMn1.5Fe0.5O4 exhibited a substantially higher discharge capacity compared to that of LiMn2O4 after long-term photocharging owing to enhanced stability under illumination. This work provides fundamental design guidelines of spinel-oxide cathode materials for the development of photo-rechargeable batteries.


Assuntos
Óxidos , Água , Óxido de Alumínio , Eletrodos
10.
Environ Sci Technol ; 57(19): 7421-7430, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37079493

RESUMO

Bacterial outer-membrane multi-heme cytochromes (OMCs) mediate extracellular electron transport (EET). While heme alignment dictates the rate of EET, control of inter-heme coupling in a single OMC remains challenging, especially in intact cells. Given that OMCs diffuse and collide without aggregation on the cell surface, the overexpression of OMCs could increase such mechanical stress to impact the OMCs' protein structure. Here, the heme coupling is modified via mechanical interactions among OMCs by controlling their concentrations. Employment of whole-cell circular dichroism (CD) spectra of genetically engineered Escherichia coli reveals that the OMC concentration significantly impacts the molar CD and redox property of OMCs, resulting in a 4-fold change of microbial current production. The overexpression of OMCs increased the conductive current across the biofilm on an interdigitated electrode, indicating that a higher concentration of OMCs causes more lateral inter-protein electron hopping via collision on the cell surface. The present study would open a novel strategy to increase microbial current production by mechanically enhancing the inter-heme coupling.


Assuntos
Elétrons , Heme , Transporte de Elétrons , Heme/metabolismo , Oxirredução , Citocromos/metabolismo , Bactérias/metabolismo
11.
Mikrochim Acta ; 190(1): 46, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604350

RESUMO

The design and construction of a visible light-driven photoelectrochemical (PEC) device is described based on a CdSe-Co3O4@TiO2 nanoflower (NF). Moreover, an application to the ultrasensitive detection of viruses, such as hepatitis E virus (HEV), HEV-like particles (HEV-LPs), and SARS-CoV-2 spike protein in complicated lysate solution, is demonstrated. The photocurrent response output of a PEC device based on CdSe-Co3O4@TiO2 is enhanced compared with the individual components, TiO2 and CdSe-Co3O4. This can be attributed to the CdSe quantum dot (QD) sensitization effect and strong visible light absorption to improve overall system stability. A robust oxygen-evolving catalyst (Co3O4) coupled at the hole-trapping site (CdSe) extends the interfacial carrier lifetime, and the energy conversion efficiency was improved. The effective hybridization between the antibody and virus resulted in a linear relationship between the change in photocurrent density and the HEV-LP concentration ranging from 10 fg mL-1 to 10 ng mL-1, with a detection limit of 3.5 fg mL-1. This CdSe-Co3O4@TiO2-based PEC device achieved considerable sensitivity, good specificity, and acceptable stability and demonstrated a significant ability to develop an upgraded device with affordable and portable biosensing capabilities.


Assuntos
COVID-19 , Compostos de Cádmio , Compostos de Selênio , Humanos , Luz , SARS-CoV-2 , Nanoestruturas
12.
Patterns (N Y) ; 3(11): 100610, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36419444

RESUMO

Data science emerges as a promising approach for studying and optimizing complex multivariable phenomena, such as the interaction between microorganisms and electrodes. However, there have been limited reports on a bioelectrochemical system that can produce a reliable database until date. Herein, we developed a high-throughput platform with low deviation to apply two-dimensional (2D) Bayesian estimation for electrode potential and redox-active additive concentration to optimize microbial current production (I c ). A 96-channel potentiostat represents <10% SD for maximum I c . 576 time-I c profiles were obtained in 120 different electrolyte and potentiostatic conditions with two model electrogenic bacteria, Shewanella and Geobacter. Acquisition functions showed the highest performance per concentration for riboflavin over a wide potential range in Shewanella. The underlying mechanism was validated by electrochemical analysis with mutant strains lacking outer-membrane redox enzymes. We anticipate that the combination of data science and high-throughput electrochemistry will greatly accelerate a breakthrough for bioelectrochemical technologies.

13.
Patterns (N Y) ; 3(11): 100637, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36419452

RESUMO

Waheed, a former postdoctoral researcher; Gaku, a senior researcher; and Akihiro, a group leader in Okamoto lab succeeded high-quality database construction and discovered a highly stable microbial power-generation mechanism. They talk about how wet electrochemists jumped into the data science field and the potential of data science to explore complex bacteria/electrode interactions.

14.
Microorganisms ; 10(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296327

RESUMO

Ultramicrobacteria (UMB) that can pass through a 0.22 µm filter are attractive because of their novelty and diversity. However, isolating UMB has been difficult because of their symbiotic or parasitic lifestyles in the environment. Some UMB have extracellular electron transfer (EET)-related genes, suggesting that these symbionts may grow on an electrode surface independently. Here, we attempted to culture from soil samples bacteria that passed through a 0.22 µm filter poised with +0.2 V vs. Ag/AgCl and isolated Cellulomonas sp. strain NTE-D12 from the electrochemical reactor. A phylogenetic analysis of the 16S rRNA showed 97.9% similarity to the closest related species, Cellulomonas algicola, indicating that the strain NTE-D12 is a novel species. Electrochemical and genomic analyses showed that the strain NTE-D12 generated the highest current density compared to that in the three related species, indicating the presence of a unique electron transfer system in the strain. Therefore, the present study provides a new isolation scheme for cultivating and isolating novel UMB potentially with a symbiotic relationship associated with interspecies electron transfer.

15.
Bioelectrochemistry ; 148: 108252, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36081271

RESUMO

Numerous bacteria owe extracellular electron transport (EET) ability, and the rate enhancement of EET is critical for the emerging sensor technology to detect metabolically active pathogens. Here, the considerable enhancement of microbial current signal was firstly demonstrated in a thin layer electrolyte sandwiched between an agar substrate (AS) containing high concentration riboflavin (RF) and a screen-printed electrode. Covering cells with this AS showed a sharply current increase from 0.033 µA to 1.59 µA (47.7-folds) in EET-capable bacteria Shewanella oneidensis MR-1. Differential pulse voltammograms using gene-deletion mutant strains of S. oneidensis MR-1 revealed thin electrolyte between RF-loaded AS and electrode enhanced the rate of electron transfer via complexes between riboflavin and outer membrane c-type cytochrome. A similar effect in Streptococcus mutans UA159, a biofilm-forming pathogen, was also explored. Moreover, capturing and quantifying both metabolically active microbes from the dry solid surface are demonstrated with RF-loaded AS successfully. The considerable enhancement of the EET in the thin layer electrolyte provides a new direction for designing whole-cell biosensors and understanding a microbe/electrode interaction in a micro-sized space.


Assuntos
Elétrons , Shewanella , Ágar , Citocromos , Transporte de Elétrons , Riboflavina , Shewanella/metabolismo
16.
Chem Commun (Camb) ; 58(69): 9634-9637, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35938452

RESUMO

Photocharging of high-potential spinel LiMn2O4 is demonstrated by using a water-in-salt electrolyte and TiO2 nanoparticles. In a developed half-cell system with an electron acceptor, Li extraction from LiMn2O4 proceeds under the illumination of UV-visible light at an estimated rate of ∼23 mA g-1. This work paves the way for high-potential cathode materials in photo-rechargeable batteries.

17.
Neurosci Lett ; 779: 136633, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35429588

RESUMO

Tanycytes are specialized ependymal cells lining the ventricular spaces of the adult brain and thereby provide an interface between the cerebrospinal fluid (CSF) and brain parenchyma. They act as energy homeostasis, neuroendocrine regulation, and CSF-brain barrier; however, their functional significance in CSF-brain communication currently remains unknown. In the present study, we investigated the presence of tanycytic transcytosis using fluorescent tracers; a GM1 ligand, cholera toxin B (CTB), and a mannose-6-phosphate/insulin-like growth factor-Ⅱ receptor ligand, wheat germ agglutinin (WGA). Both CTB and WGA were incorporated by tanycytes and then released into brain parenchyma in the circumventricular organs such as the organum vasculosum laminae terminalis, subfornical organ, and median eminence, arcuate nucleus, and medullary central canal. Incorporated fluorescent CTB and WGA were released from tanycytes to distribute at neuronal somata. These results indicate that tanycytes of all examined brain regions possess the transport capability of macromolecules from CSF to brain neurons.


Assuntos
Órgãos Circunventriculares , Células Ependimogliais , Animais , Encéfalo , Células Ependimogliais/fisiologia , Ligantes , Camundongos , Transcitose
18.
Microorganisms ; 10(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35208725

RESUMO

Methanogens capable of accepting electrons from Fe0 cause severe corrosion in anoxic conditions. In previous studies, all iron-corrosive methanogenic isolates were obtained from marine environments. However, the presence of methanogens with corrosion ability using Fe0 as an electron donor and their contribution to corrosion in freshwater systems is unknown. Therefore, to understand the role of methanogens in corrosion under anoxic conditions in a freshwater environment, we investigated the corrosion activities of methanogens in samples collected from groundwater and rivers. We enriched microorganisms that can grow with CO2/NaHCO3 and Fe0 as the sole carbon source and electron donor, respectively, in ground freshwater. Methanobacterium sp. TO1, which induces iron corrosion, was isolated from freshwater. Electrochemical analysis revealed that strain TO1 can uptake electrons from the cathode at lower than -0.61 V vs SHE and has a redox-active component with electrochemical potential different from those of other previously reported methanogens with extracellular electron transfer ability. This study indicated the corrosion risk by methanogens capable of taking up electrons from Fe0 in anoxic freshwater environments and the necessity of understanding the corrosion mechanism to contribute to risk diagnosis.

19.
Microorganisms ; 10(2)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35208926

RESUMO

A rapid and label-free method for the detection of drug-resistant pathogens is in high demand for wastewater-based epidemiology. As recently shown, the extent of electrical current production (Ic) is a useful indicator of a pathogen's metabolic activity. Therefore, if drug-resistant bacteria have extracellular electron transport (EET) capability, a simple electric sensor may be able to detect not only the growth as a conventional plating technique but also metabolic activity specific for drug-resistant bacteria in the presence of antibiotics. Here, one of the multidrug-resistant pathogens in wastewater, Klebsiella pneumoniae, was shown to generate Ic, and the extent of Ic was unaffected by the microbial growth inhibitor, kanamycin, while the current was markedly decreased in environmental EET bacteria Shewanella oneidensis. Kanamycin differentiated Ic in K. pneumonia and S. oneidensis within 3 h. Furthermore, the detection of K. pneumoniae was successful in the presence of S. oneidensis in the electrochemical cell. These results clarify the advantage of detecting drug-resistant bacteria using whole-cell electrochemistry as a simple and rapid method to detect on-site drug-resistant pathogens in wastewater, compared with conventional colony counting, which takes a few days.

20.
Bioresour Technol ; 350: 126844, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35158034

RESUMO

The ability of various bacteria to make use of solid substrates through extracellular electron transfer (EET) or extracellular electron uptake (EEU) has enabled the development of valuable biotechnologies such as microbial fuel cells (MFCs) and microbial electrosynthesis (MES). It is common practice to use metallic and semiconductive nanoparticles (NPs) for microbial current enhancement. However, the effect of NPs is highly variable between systems, and there is no clear guideline for effectively increasing the current generation. In the present review, the proposed mechanisms for enhancing current production in MFCs and MES are summarized, and the critical factors for NPs to enhance microbial current generation are discussed. Implications for microbially induced iron corrosion, where iron sulfide NPs are proposed to enhance the rate of EEU, photochemically driven MES, and several future research directions to further enhance microbial current generation, are also discussed.


Assuntos
Fontes de Energia Bioelétrica , Nanopartículas , Fontes de Energia Bioelétrica/microbiologia , Corrosão , Eletrodos , Transporte de Elétrons , Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...