Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39251034

RESUMO

OBJECTIVE: To investigate the effect of transcutaneous electrical nerve stimulation (TENS) in reducing barriers to the implementation of exercise therapy and promoting exercise therapy, focusing on physical activity. DESIGN: A single, participant-blinded, randomized controlled trial (RCT) with a pre-post design SETTING: Single-institution, orthopedic clinic PARTICIPANTS: Participants had knee pain for at least 3 months (N=63, ≥50 years of age) and were randomly assigned to the TENS (N=21), exercise (N=23), or combined (N=19) group. INTERVENTIONS: Participants were provided with 4 weeks of intervention: the TENS group using a wearable TENS device, exercise group performing designated exercises, and combined group performing activities from the TENS and exercise groups. MAIN OUTCOME MEASURES: The primary outcome measure was physical activity (PA). The secondary outcome measures were 6-minute walk test (6MWT); timed up-and-go test (TUG); stair climbing; knee pain using the visual analog scale at 6MWT, TUG, and stair climbing; and patient-reported changes in knee pain over time. RESULTS: At pre- and post-intervention, light-intensity PA time (LPA) in the TENS, exercise, and combined groups was 735.62±68.82 vs. 714.21±73.06 (p=0.061), 733.05±103.90 vs. 700.31±90.33 (p=0.057), and 710.09±62.98 vs. 685.22±58.35 (p=0.049), respectively, with a significant decrease in the combined group. Significant improvement in knee pain and stair climbing was observed in all groups pre- and post-intervention. CONCLUSIONS: The group using TENS showed improved effects of early reduction in knee pain and when combined with exercise therapy, a reduction in time spent in light-intensity activities such as sedentary behavior. Thus, the use of TENS in combination with conventional exercise therapy has the potential to reduce psychological barriers to the introduction of exercise therapy. It also promotes and ensures the safe implementation and continuation of exercise therapy.

2.
J Mater Chem B ; 12(35): 8702-8715, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129447

RESUMO

This study aims to develop a biomimetic nano-drug delivery system (nano-DDS) by employing a macrophage cell membrane camouflaging strategy to modify lyotropic liquid crystal nanoparticles (LLC-NPs). The cubic-structured LLC-NPs (Cubosomes, CBs) were prepared via a top-down approach (ultra-sonification) using monoolein (MO) and doped with the cationic lipid, DOTAP. The cell membrane camouflaging procedure induced changes in the cubic lipid phase from primitive cubic phase (QIIP) to a coexistence of QIIP and diamond cubic phase (QIID). The macrophage membrane camouflaging strategy protected CB cores from the destabilization by blood plasma and enhanced the stability of CBs. The in vitro experiment results revealed that the macrophage cell membrane coating significantly reduced macrophage uptake efficacy within 8 h of incubation compared to the non-camouflaged CBs, while it had minimal impact on cancer cell uptake efficacy. The macrophage membrane coated CBs showed lower accumulation in the heart, kidney and lungs in vivo. This study demonstrated the feasibility of employing cell membrane camouflaging on CBs and confirmed that the bio-functionalities of the CBs-based biomimetic nano-DDS were retained from the membrane source cells, and opened up promising possibilities for developing an efficient and safe drug delivery system based on the biomimetic approach.


Assuntos
Materiais Biomiméticos , Membrana Celular , Cristais Líquidos , Macrófagos , Nanopartículas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Camundongos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Nanopartículas/química , Cristais Líquidos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células RAW 264.7 , Humanos , Biomimética , Tamanho da Partícula
3.
Sci Rep ; 14(1): 15831, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982188

RESUMO

2-Hydroxyoleic acid (2-OHOA) has gained attention as a membrane lipid therapy (MLT) anti-cancer drug. However, in the viewpoint of anti-cancer drug, 2-OHOA shows poor water solubility and its effectiveness still has space for improvement. Thus, this study aimed to overcome the problems by formulating 2-OHOA into liposome dosage form. Furthermore, in the context of MLT reagents, the influence of 2-OHOA on the biophysical properties of the cytoplasmic membrane remains largely unexplored. To bridge this gap, our study specifically focused the alterations in cancer cell membrane fluidity and lipid packing characteristics before and after treatment. By using a two-photon microscope and the Laurdan fluorescence probe, we noted that liposomes incorporating 2-OHOA induced a more significant reduction in cancer cell membrane fluidity, accompanied by a heightened rate of cellular apoptosis when compared to the non-formulated 2-OHOA. Importantly, the enhanced efficacy of 2-OHOA within the liposomal formulation demonstrated a correlation with its endocytic uptake mechanism. In conclusion, our findings underscore the significant influence of 2-OHOA on the biophysical properties of cancer plasma membranes, emphasizing the potential of liposomes as an optimized delivery system for 2-OHOA in anti-cancer therapy.


Assuntos
Membrana Celular , Lipossomos , Fluidez de Membrana , Lipossomos/química , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Apoptose/efeitos dos fármacos , Lauratos/química , Microscopia de Fluorescência por Excitação Multifotônica , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Ácidos Oleicos/química , Corantes Fluorescentes/química
4.
Soft Matter ; 20(25): 4935-4949, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38873752

RESUMO

Deformation of the cell membrane is well understood from the viewpoint of protein interactions and free energy balance. However, the various dynamic properties of the membrane, such as lipid packing and hydrophobicity, and their relationship with cell membrane deformation are unknown. Therefore, the deformation of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and oleic acid (OA) giant unilamellar vesicles (GUVs) was induced by heating and cooling cycles, and time-lapse analysis was conducted based on the membrane hydrophobicity and physical parameters of "single-parent" and "daughter" vesicles. Fluorescence ratiometric analysis by simultaneous dual-wavelength detection revealed the variation of different hydrophilic GUVs and enabled inferences of the "daughter" vesicle composition and the "parent" membrane's local composition during deformation; the "daughter" vesicle composition of OA was lower than that of the "parents", and lateral movement of OA was the primary contributor to the formation of the "daughter" vesicles. Thus, our findings and the newly developed methodology, named in situ quantitative membrane property-morphology relation (QmPMR) analysis, would provide new insights into cell deformation and accelerate research on both deformation and its related events, such as budding and birthing.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Membrana Celular , Interações Hidrofóbicas e Hidrofílicas , Ácido Oleico , Lipossomas Unilamelares , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Ácido Oleico/química , 1,2-Dipalmitoilfosfatidilcolina/química , Membrana Celular/química
5.
Molecules ; 29(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542834

RESUMO

This research aims to deepen the understanding of the relationship between conductivity and morphology in polypyrrole (PPy) via a comparison of the bipolaron to polaron ratios with a focus on the C-H deformation area. PPy samples were synthesized with different surfactants: sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and tween 80 (TW). This study revealed that SDS significantly altered the bipolaron and polaron in the C-H deformation region and showed higher conductivity than other surfactants. Notably, the morphological shifts to a sheet-like structure when using ammonium sulfate (APS) contrasted with the particle-like form observed with ferric chloride (FeCl3). These results showed that if the oxidant changed, the bipolaron and polaron ratios in C-H deformation were unrelated to PPy morphology. However, this work showed a consistent relationship between SDS use, the bipolaron and polaron ratios in the C-H deformation, and the conductivity properties. Moreover, the natural positive charge of PPy and negatively charged SDS molecules may lead to an electrostatic interaction between PPy and SDS. This work assumes that this interaction might cause the transformation of polaron to bipolaron in the C-H deformation region, resulting in improved conductivity of PPy. This work offers more support for the future investigation of PPy characteristics.

6.
ACS Omega ; 9(2): 2383-2390, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250365

RESUMO

Chitosan-based cryogel particles were synthesized using the inverse Leidenfrost (iLF) effect, with glutaraldehyde employed as the cross-linker. The resulting cryogels exhibited a sponge-like morphology with micrometer-sized interconnected pores and demonstrated resilience, withstanding up to three compression-release cycles. These characteristics highlight the potential of chitosan cryogels for diverse applications, including adsorption and biomedical uses. We further investigated the influence of varying acetic acid concentrations on the properties of the chitosan cryogels. Our findings revealed that the particle size distribution of the cryogels ranged from 1300 to 2900 µm. As the concentration of acetic acid increased, the swelling degree of the chitosan cryogels decreased, stabilizing at an approximate value of around 6 at 0.03 mol of acetic acid. Additionally, the shift in the absorption peak of the OH and free amino groups from 3261 to 3404 cm-1 confirmed the cross-linking reaction between chitosan and glutaraldehyde.

7.
Biophys J ; 122(23): 4614-4623, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37924207

RESUMO

Laurdan and Prodan were designed for the evaluation of the surrounding hydration state. When inserted into lipid bilayer systems, both probes are located at different positions and their fluorescence properties are drastically varied, depending on their surrounding environment. In this study, a novel method using the above fluorescence probes was proposed on the basis of fluorescence lifetime (τ) and emission peak (λ), called as τ vs. λ plot, determined by global analysis of their multiple fluorescence decays and deconvolution of these decay-associated spectra. According to the evaluation of τ vs. λ plot, the existence of multiple fluorescence components in the membrane was revealed. In addition, their fluorescence distribution properties, described on τ vs. λ plot, of each probe tended to correspond to the phase state and vertical direction of the lipid membrane. To assess the contribution of environmental effect to each distribution, we defined the region in the τ vs. λ plot, which was modeled from a series of solvent mixtures (hexane, acetone, ethanol and water) to emulate the complex environment in the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayer system. The distributions of fluorescence components of Laurdan and Prodan in lipid membranes were classified into each solvent species, and Prodan partition into bulk water was distinguished. The sensitivity of Prodan to the phase pretransition of the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayer system was also observed in increasing the temperature. Noticeably, most of the fluorescence components was assigned to the solvent model, except for a single component that has longer lifetime and shorter emission wavelength. This component was dominant in solid-ordered phase; hence, it is assumed to be a specific component in lipid membranes that cannot be represented by solvents. Although these are still qualitative analytical methods, the unique approach proposed in this study provides novel insights into the multi-focal property of the membrane.


Assuntos
2-Naftilamina , Bicamadas Lipídicas , Solventes , Água , Corantes Fluorescentes , Espectrometria de Fluorescência
8.
ACS Omega ; 8(1): 829-834, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643442

RESUMO

We have investigated the versatility of a two-step preparation method, without a detergent, that combines both the inverse Leidenfrost effect and the cryogelation technique by using the macroporous particles of different kinds of monomers (four vinyl monomers) or a natural polymer (agarose). First, the precursor of polymers was dropped into liquid nitrogen to prepare the spherical frozen droplet by the inverse Leidenfrost effect. Second, the frozen droplets were cryo-polymerized at the frozen temperature; then, cryogel particles were prepared after thawing. Subsequently, the basic characteristics of the macroporous polymer particles obtained above were compared, focusing on the appearances, porous morphologies, and mechanical properties. It was found that the similar polymer particles could be obtained by the two-step preparation method, while there was a slight difference in their characteristics, depending on the type of monomers. Especially for the mechanical properties, the cryogel particles of the hydrophilic polymer exhibited a shape memory function with sponge-like elasticity, whereas the hydrophobic polymer particles were observed to be cracked after compression (i.e., no shape memory function). This work provides a versatile method of adopting various kinds of monomers and natural polymers for the preparation of macroporous particles. Hence, the method possibly has a potential to prepare and design "tailor-made" macroporous polymer particles for the application purpose.

9.
ACS Omega ; 8(51): 48946-48957, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162777

RESUMO

Polypyrrole (PPy) is a conductive polymer known for its biocompatibility and ease of synthesis. Chemically polymerized PPy was synthesized in the presence of sodium dodecyl sulfate (SDS), showing correlations among chemical properties, physical morphology, and electrical properties. Focused synthesis parameters included the pyrrole (Py) concentration, SDS concentration, and ammonium persulfate (APS)/Py ratio. The addition of SDS during chemical polymerization influenced the physical morphology of PPy by altering the self-assembling process via micelle formation, yielding sheet-like morphologies. However, the phenomenon also relied heavily on other synthesis parameters. Varying SDS concentrations within the 0.01 to 0.30 M window produced PPy sheets with no significant difference in optical band gap or physical size. While using 0.10 M SDS, an increase in Py concentration from 0.10 to 0.30 M yielded a larger size of PPy as the morphology changed from sheet-like to irregular shape. The band gap dropped from 2.35 to 1.10 eV, and the conductivity rose from 6.80 × 10-1 to 9.40 × 10-1 S/m. With an increase in the APS/Py ratio, the PPy product changed from a random to a sheet-like form. The product provided a larger average size, a decreased band gap, and increased electrical conductivity. Py polymerization in the absence of SDS revealed no significant change in shape or size as the Py concentration increased from 0.10 to 0.30 M; only a sphere-like form was observed, with a large band gap and small conductivity. Results from Raman spectral analysis indicated a correlation between optical band gap, physical morphology, and bipolaron/polaron ratio, mainly at the wavelengths associated with C-C stretching and C-H deformation. The increase in average size was associated with a decrease in band gap and resistance as well as an increase in the bipolaron/polaron ratio. This work indicates a strong correlation between size, morphology, electrical properties, and the bipolaron/polaron ratio of PPy in the presence of SDS.

10.
Langmuir ; 38(48): 14768-14778, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36437713

RESUMO

A catanionic surfactant system is an aqueous solution or dispersion of cationic and anionic surfactants that spontaneously self-assemble into structures such as micelles, vesicles, and coacervates. Their structural diversity varies depending on the ratios of cationic and anionic surfactants (compositions), the chemical structure of the constituent molecules, etc. Herein, two types of catanionic surfactant systems were systematically characterized: (i) cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), both typical ionic surfactants; and (ii) dodecylmethylimidazolium ammonium bromide ([C12mim]Br) and SDS, where the former is an ionic liquid. By observing the sample appearance, turbidity, and particle size, the phase state of each system was analyzed according to the total concentration of surfactants and the molar ratio of cationic surfactants to the total concentration. Especially, for specific compositions of catanionic surfactant vesicles (cataniosome), the closed structure of the vesicles was confirmed through calcein entrapment and release detected with a fluorescence assay. The polarities of the interface of the prepared self-assemblies were evaluated using a fluorescence probe, Laurdan. The packing state of the molecules in the formed self-assembly structure was estimated using Raman spectroscopy. The results clearly indicate consistent phase-transition behavior for the CTAB-SDS (i) and [C12mim]Br-SDS (ii) systems, depending on the total surfactant concentration and composition, while the membrane properties of the two systems differed. The cataniosome formed in the CTAB-SDS system was in a tightly packed membrane state and more hydrophobic than that formed in the [C12mim]Br-SDS system owing to the difference in the structure of the constituting molecule: [C12mim]Br has a larger head group and shorter acyl chain than CTAB. The self-assembly properties evaluated in this study were compared with those of typical lipid membranes, liposomes (lipid vesicles), to determine a possible application of the catanionic systems with various self-assembly formulations.


Assuntos
Surfactantes Pulmonares , Tensoativos , Tensoativos/química , Cetrimônio , Dodecilsulfato de Sódio/química , Compostos de Cetrimônio/química , Cátions/química , Excipientes
11.
Membranes (Basel) ; 12(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36005685

RESUMO

The lipid membrane forms nanodomains (rafts) and shows heterogeneous properties. These nanodomains relate to significant roles in various cell functions, and thus the analysis of the nanodomains in phase-separated lipid membranes is important to clarify the function and role of the nanodomains. However, the lipid membrane possesses small-sized nanodomains and shows a small height difference between the nanodomains and their surroundings at certain lipid compositions. In addition, nanodomain analysis sometimes requires highly sensitive and expensive apparatus, such as a two-photon microscope. These have prevented the analysis by the conventional fluorescence microscope and by the topography of the scanning probe microscope (SPM), even though these are promising methods in macroscale and microscale analysis, respectively. Therefore, this study aimed to overcome these problems in nanodomain analysis. We successfully demonstrated that solvatochromic dye, LipiORDER, could analyze the phase state of the lipid membrane at the macroscale with low magnification lenses. Furthermore, we could prove that the phase mode of SPM was effective in the visualization of specific nanodomains by properties difference as well as topographic images of SPM. Hence, this combination method successfully gave much information on the phase state at the micro/macro scale, and thus this would be applied to the analysis of heterogeneous lipid membranes.

12.
J Biosci Bioeng ; 134(3): 269-275, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35810136

RESUMO

Polyphenols are widely used as antioxidant agents to protect human health. Resveratrol, kaempferol, and quercetin have been reported to have potent antioxidant activity; however, these compounds have many problems related to their practical application, such as instability and insolubility. Thus, a nanostructured lipid carrier (NLC) was utilized as a drug delivery system (DDS) to overcome these limitations. This study investigated the particle stability, drug loading performance, and antioxidant activity of polyphenols-incorporated NLCs. The particle size and distribution were suitable for DDS applications, and all the samples demonstrated good stability after 2 months of storage. Based on Raman spectroscopy analysis, polyphenols were successfully encapsulated in NLCs. Quantitative high-performance liquid chromatography analysis indicated that NLCs could load resveratrol more than kaempferol and quercetin. In addition, NLCs have successfully improved all the antioxidant activity per unit concentration of polyphenol (specific antioxidant activity) compared to the free polyphenols. Quercetin-incorporated NLCs showed the highest specific antioxidant activity. This result is the opposite of entrapment efficiency and actual antioxidant activity, most likely influenced by the location of entrapped polyphenol molecules. As it was performed, NLCs are highly recommended to be applied as an antioxidant delivery system.


Assuntos
Antioxidantes , Nanoestruturas , Portadores de Fármacos/química , Humanos , Quempferóis , Lipídeos/química , Nanoestruturas/química , Tamanho da Partícula , Polifenóis , Quercetina , Resveratrol
13.
Langmuir ; 37(38): 11195-11202, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34528800

RESUMO

Numerous research studies have been done for exosomes, particularly focusing on membrane proteins and included nucleic acids, and the volume of the knowledge about the lipids in the exosomal membrane has been increasing. However, the dynamic property of the exosomal membrane is hardly studied. By employing milk exosome as an example, herein the exosomal membrane was characterized focusing on the membrane fluidity and polarity. The lipid composition and phase state of milk exosome (exosome from bovine milk) were estimated. The milk exosome contained enriched Chol (43.6 mol % in total lipid extracts), which made the membrane in the liquid-ordered (lo) phase by interacting with phospholipids. To suggest a model of exosomal vesicle cargo, the liposome compositions that mimic milk exosome were studied: liposomes were made of cholesterol (Chol), milk sphingomyelin (milk SM), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). By using fluorescent probes 1,6-diphenyl-1,3,5-hexatriene and 6-dodecanoyl-2-dimethylaminonaphthalene, the microenvironments of submicron-sized membranes of exosome and model liposomes were investigated. The membrane fluidity of milk exosome was slightly higher than those of Chol/milk SM/POPC liposomes with a similar content of Chol, suggesting the presence of enriched unsaturated lipids. The most purposeful membrane property was obtained by the liposome composition of Chol/milk SM/POPC = 40/15/45. From the above, it is concluded that Chol is a fundamental component of the milk exosomal membrane to construct the enriched lo phase, which could increase the membrane rigidity and contribute to the function of exosome.


Assuntos
Fluidez de Membrana , Fosfatidilcolinas , Animais , Bovinos , Colesterol , Bicamadas Lipídicas , Lipossomos , Fosfolipídeos , Esfingomielinas
14.
Langmuir ; 37(22): 6811-6818, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34044542

RESUMO

The Belousov-Zhabotinsky (BZ) reaction is an oscillating reaction due to periodic oscillations that happen in the concentration of some intermediates. Such systems can be applied together with hydrophobic membranes to create an autonomous behavior in artificial systems. However, because of a complex set of reactions happening in such systems, the interferences caused by hydrophobic membranes are not easily understood. In this study, we tested lipid membranes composed of trimethylammonium-propane (TAP) and phosphate (PA) lipids in an attempt to break down how the polar region of phosphatidylcholine (PC) lipid membranes affect the BZ reaction. According to our findings, the trimethylammonium group and membrane fluidity are crucial to change the frequency of oscillations in the reaction. In addition, the results also indicate a possible complexation of cerium ions with membranes with a phosphate head group.

15.
J Biosci Bioeng ; 132(1): 49-55, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33863664

RESUMO

Quercetin (QCT), existing in common dietary sources, is an abundant bioflavonoid with planar structure and exerts multiple pharmacological effects. Herein, four kinds of liposomes were prepared as model biomembranes, and then the partition coefficient, distribution in lipid membrane and influence of the QCT on the membrane properties were evaluated. The partition of QCT to lipid membranes was affected by both membrane phase state and the interference of QCT on membrane properties. The location of QCT in lipid membrane was related to the phase state of lipid membrane. In addition, influence of QCT on the compaction of the hydrocarbon tail in lipid membranes was dependent on the unsaturation degree of lipid molecules. Finally, about its antioxidant activity, from the results of 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, it can be concluded that the interaction of QCT with lipid membrane greatly influences on QCT reductive activity in lipid membrane. Furthermore, mass spectrometry of DOPC molecule showed no lipid oxidation in the presence of QCT, indicating that in addition to the QCT ability toward radical scavenging, the ordering effect of QCT in unsaturated lipid membrane would be helpful to protect lipid membrane from oxidation by inhibiting radical diffusion (synergy effect). Based on lipid membrane analysis, our study made it clear that the effect of QCT on various lipid membrane and its relation with the antioxidant effect of QCT within lipid membrane. Therefore, our analytical method and findings would be also helpful for understanding the mechanism of other antioxidants effects on biomembrane.


Assuntos
Antioxidantes/metabolismo , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Quercetina/metabolismo , Difusão , Oxirredução
16.
Langmuir ; 37(14): 4284-4293, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33797256

RESUMO

Nanostructured lipid carriers (NLCs) are gaining attention as the new generation of lipid vehicles. These carriers consist of saturated lipids with small drops of liquid oil dispersed into the inner lipid matrix and are stabilized by a surfactant. Conventionally, NLC-based drug delivery systems have been widely studied, and many researchers are looking into the composition of NLC properties to improve the performance of NLCs. The membrane fluidity and polarity of self-assembling lipids are also essential properties that must be affected by membrane compositions; however, such fundamental characteristics have not been studied yet. In this study, NLCs were prepared from cetyl palmitate (CP), caprylic triglyceride (CaTG), and Tween 80 (T80). Structural properties, such as particle size and ζ-potential of the CP/CaTG/T80 ternary mixtures, were investigated. Then, the systematic characterization of self-assembly properties using fluorescence-based analysis was applied for the first time to the NLC system. As a final step, the ternary diagram was developed based on the self-assembly properties to summarize the possible structures formed at different compositions. The results showed four states: micelle-like, oil-in-water (O/W) emulsion-like, solid lipid nanoparticle-like, and intermediate (solid-liquid coexistence). For the purpose of making the lipid matrix more liquified, the heterogeneous state and the disordered state of the O/W emulsion-like structure might fulfill the criteria of NLCs. Finally, the ternary diagram provides new information about the assembly state of NLC constituents that could become an important reference for developing high-performance NLCs.

17.
J Phys Chem B ; 124(44): 9862-9869, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33086793

RESUMO

The Belousov-Zhabotinsky (BZ) reaction has been applied to give autonomous dynamic behaviors to artificial systems. This reaction is conducted in an aqueous system, but it produces some hydrophobic intermediates, such as bromine. On the basis of previous works about reactions in the lipid bilayer, we investigated how liposome membranes (water-oil interface) affect the BZ reaction. Herein diacylglycerophosphocholine (PC) molecules with a variety of hydrocarbon tails were selected as components of liposomes, and the BZ reaction in the presence of the liposomes was characterized. As a result, membrane fluidity was the main characteristic leading to changes in the reaction behavior. The decrease of the frequency of oscillations was relevant to membrane fluidity, suggesting the interaction of bromine species in the hydrophobic site of the liposomes. In addition, the heterogeneous membrane (so+ld) of DMPC showed a fast decrease in the amplitude of oscillations. Conclusively, characteristics of the hydrophobic environment play a role in the reaction.


Assuntos
Bicamadas Lipídicas , Lipossomos , Interações Hidrofóbicas e Hidrofílicas , Fluidez de Membrana , Água
18.
Anal Sci ; 36(4): 395-396, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32281581
19.
Langmuir ; 36(12): 3242-3250, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32163713

RESUMO

Bicelles are submicrometer-sized disc-shaped molecular self-assemblies that can be obtained in aqueous solution by dispersing mixtures of certain amphiphiles. Although phospholipid bicelle and phospholipid vesicle assemblies adopt similar lipid bilayer structures, the differences in bilayer characteristics, especially physicochemical properties such as bilayer fluidity, are not clearly understood. Herein, we report the lipid ordering properties of bicelle bilayer membranes based on induced circular dichroism (ICD) and fluorescence polarization analyses using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe. Bicelles were prepared by using 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), while pure DMPC vesicles and pure DHPC micelles were used as references. At temperatures below the phase transition temperature of DMPC, the bicelles showed lower membrane fluidities, whereas DHPC micelles showed higher membrane fluidity, suggesting no significant differences in bilayer fluidity between the bicelle and vesicle assemblies. The ICD signals of DPH were induced only when the membrane was in ordered (solid-ordered or ripple-gel) phases. In the bicelle systems, the ICD of DPH was more significant than that of the DMPC vesicle. The induced chirality of DPH was dependent on the chirality of the bilayer lipid. Compared to that of the DMPC/DHPC bicelle, the ICD of the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/DHPC bicelle was higher, while that of the bovine sphingomyelin/DHPC bicelle was lower. Because the lipids are tightly packed in the ordered phase, the ICD intensity reflects the molecular ordering state of the lipids in the bicelle bilayer.

20.
J Biosci Bioeng ; 129(5): 624-631, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31837994

RESUMO

Regenerated cellulose can be prepared by treatment with an ionic liquid (IL) and an anti-solvent such as water, which significantly enhances the enzymatic hydrolysis in comparison to crystalline cellulose. The IL-aqueous two-phase system (IL-ATPS) is consisted of IL-condensed top phase and salt-condensed bottom phase, which could be suitable to produce regenerated cellulose with smaller amount of IL. Using IL-ATPS with different pH, the enzymatic saccharification efficiency of crystalline cellulose was determined. The use of 1-allyl-3-methylimidazolium chloride resulted in relatively higher yield of glucose production as compared to 1-butyl-3-methylimidazolium chloride. The IL-ATPS showing optimal pH for cellulase was prepared with mixed salt (NaH2PO4/Na2HPO4 = 5/1 (wt/wt)), which provide a regenerated cellulose with the pH range of 4.8-4.9 in enzymatic reaction mixture. Using such regenerated cellulose as feed of saccharification, the final yield of glucose was about 70%.


Assuntos
Celulose/química , Líquidos Iônicos/química , Compostos Alílicos/química , Biocatálise , Celulase/química , Fracionamento Químico , Glucose/química , Hidrólise , Imidazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA