Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38875714

RESUMO

Changes in hydration status occur throughout the day affecting physiological and behavioral functions. However, little is known about the hydration status of free-living Japanese children and the seasonality of this response. We evaluated hydration status estimated by urine osmolality (Uosm) in 349 children (189 boys and 160 girls, 9.5 ± 2.6 years, range: 6 to 15 years) upon waking at home and during a single school day in spring (April) and summer (July). Further, we assessed the efficacy of employing self-assessment of urine color (UC, based on an 8-point scale) by children to monitor their hydration status. Early morning Uosm was greater in the spring (903 ± 220 mOsm L-1; n = 326) as compared to summer (800 ± 244 mOsm L-1; n = 125) (P = 0.003, paired t-test, n = 104). No differences, however, were observed in Uosm during the school day (P = 0.417, paired t-test, n = 32). While 66% and 50% of children were considered underhydrated (Uosm ≧800 mOsm L-1) upon waking in the spring and summer periods respectively, more children were underhydrated (∼12%) during the school day. Self-reported UC was similar between seasons as assessed in the morning and school day (P ≧ 0.101, paired t-test), which differed from the pattern of responses observed with Uosm. We showed that a significant number of Japanese children are likely underhydrated especially in the spring period. Children do not detect seasonal changes in hydration from self-assessed UC, limiting its utility to manage hydration status in children.

2.
Appl Physiol Nutr Metab ; 49(5): 667-679, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377479

RESUMO

We evaluated changes in hyperhydration and beverage hydration index (BHI, a composite measure of fluid balance after consuming a test beverage relative to water) during resting, induced by the consumption of beverages containing glycerol and sodium supplemented with fast-absorbing sucrose or slow-absorbing isomaltulose. In a randomized crossover, single-blinded protocol (clinical trials registry: UMIN000042644), 14 young physically active adults (three women) consumed 1 L of beverage containing either 7% glycerol + 0.5% sodium (Gly + Na), Gly + Na plus 7% sucrose (Gly + Na + Suc), Gly + Na plus 7% isomaltulose (Gly + Na + Iso), or water (CON) over a 40 min period. We assessed the change in plasma volume (ΔPV), BHI (calculated from cumulative urine output following consumption of water relative to that of the beverage), and blood glucose and sodium for 180 min after initiating ingestion. Total urine volume was reduced in all beverages containing glycerol and sodium compared to CON (all P ≤ 0.002). The addition of isomaltulose increased BHI by ∼45% (3.43 ± 1.0 vs. 2.50 ± 0.7 for Gly + Na, P = 0.011) whereas sucrose did not (2.6 ± 0.6, P = 0.826). The PV expansion was earliest for Gly + Na (30 min), slower for Gly + Na + Suc (90 min), and slowest for Gly + Na + Iso (120 min) with a concomitant lag in the increase of blood glucose and sodium concentrations. Supplementation of beverages containing glycerol and sodium with isomaltulose but not sucrose enhances BHI from those of glycerol and sodium only under a resting state, likely due to the slow absorption of isomaltulose-derived monosaccharides (i.e., glucose and fructose).


Assuntos
Estudos Cross-Over , Glicerol , Isomaltose , Isomaltose/análogos & derivados , Humanos , Isomaltose/administração & dosagem , Masculino , Feminino , Método Simples-Cego , Adulto Jovem , Glicerol/sangue , Adulto , Sacarose/administração & dosagem , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Bebidas , Glicemia/metabolismo , Sódio/urina , Sódio/sangue , Volume Plasmático
3.
Nitric Oxide ; 138-139: 96-103, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619814

RESUMO

Iontophoretic transdermal administration of NG-nitro-l-arginine methyl ester hydrochloride [l-NAME, a nitric oxide synthase (NOS) inhibitor] has been used as a non-invasive evaluation of NOS-dependent mechanisms in human skin. However, the availability has yet to be investigated in sweating research. Prior observations using invasive techniques (e.g., intradermal microdialysis technique) to administer l-NAME have implicated that NOS reduces sweating induced by heat stress but rarely influences the response induced by the administration of cholinergic muscarinic receptor agonists. Therefore, we investigated whether the transdermal iontophoretic administration of l-NAME modulates sweating similar to those prior observations. Twenty young healthy adults (10 males, 10 females) participated in two experimental protocols on separate days. Before each protocol, saline (control) and 1% l-NAME were bilaterally administered to the forearm skin via transdermal iontophoresis. In protocol 1, 0.001% and 1% pilocarpine were iontophoretically administered at l-NAME-treated and untreated sites. In protocol 2, passive heating was applied by immersing the lower limbs in hot water (43 °C) until the rectal temperature increased by 0.8 °C above baseline. The sweat rate was continuously measured throughout both protocols. Pilocarpine-induced sweat rate was not significantly different between the control and l-NAME-treated sites in both pilocarpine concentrations (P ≥ 0.316 for the treatment effect and interaction of treatment and pilocarpine concentration). The sweat rate during passive heating was attenuated at the l-NAME-treated site relative to the control (treatment effect, P = 0.020). Notably, these observations are consistent with prior sweating studies administrating l-NAME into human skin using intradermal microdialysis techniques. Based on the similarity of our results with already known observations, we conclude that transdermal iontophoresis of l-NAME is a valid non-invasive technique for the investigation of the mechanisms of sweating related to NOS during heat stress.


Assuntos
Iontoforese , Sudorese , Feminino , Masculino , Adulto , Humanos , Administração Cutânea , NG-Nitroarginina Metil Éster/farmacologia , Pilocarpina/farmacologia , Resposta ao Choque Térmico
4.
Artigo em Inglês | MEDLINE | ID: mdl-36231630

RESUMO

This study aimed to determine whether heat exposure attenuates motor control performance and learning, and blunts cardiovascular and thermoregulatory responses to visuomotor accuracy tracking (VAT) tasks. Twenty-nine healthy young adults (22 males) were divided into two groups performing VAT tasks (5 trials × 10 blocks) in thermoneutral (NEUT: 25 °C, 45% RH, n = 14) and hot (HOT: 35 °C, 45% RH, n = 15) environments (acquisition phase). One block of the VAT task was repeated at 1, 2, and 4 h after the acquisition phase (retention phase). Heat exposure elevated skin temperature to ~3 °C with a marginally increased core body temperature. VAT performance (error distance of curve tracking) was more attenuated overall in HOT than in NEUT in the acquisition phase without improvement in magnitude alteration. Heat exposure did not affect VAT performance in the retention phase. The mean arterial blood pressure and heart rate, but not for sweating and cutaneous vascular responses to VAT acquisition trials, were more attenuated in HOT than in NEUT without any retention phase alternations. We conclude that skin temperature elevation exacerbates motor control performance and blunts cardiovascular response during the motor skill acquisition period. However, these alternations are not sustainable thereafter.


Assuntos
Temperatura Alta , Sudorese , Regulação da Temperatura Corporal/fisiologia , Frequência Cardíaca , Humanos , Masculino , Temperatura Cutânea , Adulto Jovem
5.
Eur J Appl Physiol ; 122(12): 2615-2626, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36107234

RESUMO

PURPOSE: Isomaltulose is a low glycemic and insulinaemic carbohydrate increasingly used as an alternative sweetener in commercial beverages. While isomaltulose beverages can improve hydration status compared to sucrose-based beverages, it remains unclear if ingestion of an isomaltulose beverage prior to exercise in the heat may improve plasma volume (PV) and thermoregulatory responses. METHODS: Twelve endurance-trained men consumed a 1L carbohydrate beverage containing either 6.5%-sucrose (SUC) or 6.5%-isomaltulose (ISO) 60 min prior to 5 successive, 15-min bouts of moderate-intensity (60% of their pre-determined maximum oxygen uptake) in the heat (32 °C, 50% relative humidity), each separated by a 5 min rest. A 6th bout was performed, wherein the participant adjusted running speed to maximize distance covered within the 15-min period. The change (Δ) in PV, heart rate (HR), body core (rectal and gastrointestinal) and skin temperatures, and whole-body sweat loss were assessed during each exercise bout. RESULTS: Ingestion of ISO induced a higher ΔPV at 4th bout only (P < 0.001) and lower HR (P = 0.032, main effect of beverage) during exercise compared to those of SUC. Body core and skin temperatures and whole-body sweat loss did not differ between conditions (all P ≥ 0.192, interaction effect). Running distance covered in final exercise bout tended to increase (~ 5%) in ISO versus SUC (P = 0.057, d = 0.64). CONCLUSIONS: Relative to a sucrose-based beverage, ISO ingestion prior to exercise in the heat reduced cardiovascular strain by preserving PV and attenuating HR, albeit with no corresponding benefit on thermoregulatory function. The former response may facilitate improvements in exercise performance.


Assuntos
Temperatura Alta , Volume Plasmático , Masculino , Humanos , Consumo de Oxigênio , Oxigênio , Isomaltose , Bebidas , Sacarose , Ingestão de Alimentos
6.
Physiol Behav ; 249: 113770, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247444

RESUMO

Isomaltulose is a low glycemic and insulinaemic carbohydrate now used as an alternative sweetener in beverages. However, it remains unclear if hydration status may be impacted differently with the consumption of beverages containing isomaltulose as compared to sucrose, a common beverage sweetener. Thirteen young adults (7 women) consumed 1 L of a carbohydrate beverage (with low electrolyte content) containing either 6.5%-sucrose, 6.5%-isomaltulose, or water within a 15 min period. For each beverage, beverage hydration index (BHI, a composite measure of fluid balance after consuming a test beverage relative to water) was calculated from urine volume produced over a 3 h period following ingestion of the carbohydrate beverages relative to water. The change in plasma volume (ΔPV), blood glucose, and lactate concentrations were assessed every 30 min post-beverage consumption. Isomaltulose ingestion attenuated urine production as compared to water and sucrose (P ≤ 0.005) over the 3 h post-ingestion period. However, no differences were observed between sucrose and water (P = 0.055). BHI was 1.53 ± 0.44 for isomaltulose (P ≤ 0.022 vs. sucrose and water) and 1.20±0.29 for sucrose (P = 0.210 vs. water). A transient reduction in ΔPV was observed following the ingestion of the isomaltulose beverage (at 30 min, P = 0.007 vs. sucrose). Thereafter, no differences in ΔPV between beverages were measured. Increases in blood glucose and lactate, indices of absorption and utility of glucose, were delayed in the isomaltulose as compared to sucrose beverage. In summary, we demonstrated a greater BHI with a carbohydrate-electrolyte beverage containing isomaltulose as compared to sucrose. This may in part be attributed to a delayed absorption of isomaltulose reducing diuresis.


Assuntos
Glicemia , Sacarose , Bebidas/análise , Estudos Cross-Over , Eletrólitos , Feminino , Humanos , Isomaltose/análogos & derivados , Lactatos , Masculino , Edulcorantes , Água , Adulto Jovem
7.
Exp Physiol ; 107(5): 441-449, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35340063

RESUMO

NEW FINDINGS: What is the central question of this study? Does inhibition of K+ channels modulate the exercise-training-induced augmentation in cholinergic and thermal sweating? What is the main finding and its importance? Iontophoretic administration of tetraethylammonium, a K+ channel blocker, blunted sweating induced by a low dose (0.001%) of the cholinergic agent pilocarpine, but not heat-induced sweating. However, no differences in the cholinergic sweating were observed between young endurance-trained and untrained men. Thus, while K+ channels play a role in the regulation of eccrine sweating, they do not contribute to the increase in sweating commonly observed in endurance-trained adults. Our findings provide important new insights into the mechanisms underlying the regulation of sweating by endurance conditioning. ABSTRACT: We evaluated the hypothesis that the activation of K+ channels mediates the exercise-training-induced augmentation of cholinergic and thermal sweating. On separate days, 11 endurance-trained and 10 untrained men participated in two experimental protocols. Prior to each protocol, we administered 2% tetraethylammonium (TEA, K+ channels blocker) and saline (Control) at forearm skin sites on both arms via transdermal iontophoresis. In protocol 1, low (0.001%) and high (1%) doses of pilocarpine were administered at the TEA-treated and Control sites over a 60-min period. In protocol 2, participants were passively heated by immersing their lower limbs in hot water (43°C) until core (rectal) temperature (Tc ) increased by 0.8°C above resting levels. Administration of TEA attenuated cholinergic sweating (P = 0.001) during the initial 20 min after the treatment of low dose of pilocarpine only whilst the response was similar between the groups (P = 0.163). Cholinergic and thermal sweating were higher in the trained relative to the untrained men (all P ≤ 0.033). Thermal sweating reached ∼90% of the response at a Tc elevation of 0.8°C during the initial 20 min of passive heating, which corresponds to the period wherein TEA attenuated cholinergic sweating in protocol 1. However, sweating did not differ between the Control and TEA sites in either group (P = 0.704). We showed that activation of K+ channels does not appear to mediate the elevated sweating response induced by a low dose of pilocarpine in trained men. We also demonstrated that K+ channels do not contribute to sweating during heat stress in either group.


Assuntos
Treino Aeróbico , Sudorese , Adulto , Colinérgicos , Humanos , Masculino , Pilocarpina/farmacologia , Tetraetilamônio/farmacologia
8.
Eur J Nutr ; 60(8): 4519-4529, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34129073

RESUMO

PURPOSE: Isomaltulose is a low glycemic and insulinaemic carbohydrate available as a constituent in sports drink. However, it remains unclear whether postexercise rehydration achieved by isomaltulose drink ingestion alone differs as compared to other carbohydrates. METHODS: Thirteen young men performed intermittent exercise in the heat (35 °C and relative humidity 40%) to induce a state of hypohydration as defined by a 2% loss in body mass. Thereafter, participants were rehydrated by ingesting drinks equal to the volume of body mass loss with either a mixture of 3.25% glucose and 3.25% fructose, 6.5% sucrose (SUC), or 6.5% isomaltulose (ISO) within the first 30 min of a 3-h recovery. The change in plasma volume (ΔPV) from pre-exercise baseline, blood glucose, and plasma insulin concentration were assessed every 30-min. RESULTS: ΔPV was lower in ISO as compared to SUC until 90 min of the recovery (all P ≤ 0.038) with no difference thereafter (all P ≥ 0.391). The ΔPV were paralleled by concomitant changes in blood glucose levels that were greater in ISO as compared to other drinks after 90 min of the recovery (all P ≤ 0.035). Plasma insulin secretion, which potentially enhances renal sodium reabsorption and fluid retention, did not differ between the trials (interaction, P = 0.653). ISO induced a greater net fluid volume retention as compared to SUC (P = 0.010). CONCLUSION: We showed that rehydration with an isomaltulose drink following exercise-heat stress induces comparable recovery of PV and a greater net fluid retention as compared to other drinks, albeit this response is delayed. The delayed water transport along with glucose absorption may modulate this response. This trial was registered in 25th Sep 2019 at https://www.umin.ac.jp/ as UMIN000038099. (249/250).


Assuntos
Frutose , Glucose , Ingestão de Alimentos , Humanos , Isomaltose/análogos & derivados , Masculino , Sacarose
9.
Artigo em Inglês | MEDLINE | ID: mdl-34072006

RESUMO

Isomaltulose is a low glycemic and insulinemic carbohydrate available as a constituent of sports drinks. However, it remains unclear whether thermoregulatory responses (sweating and cutaneous vasodilation) after isomaltulose drink ingestion differ from those of sucrose and water during exercise in a hot environment. Ten young healthy males consumed 10% sucrose, 10% isomaltulose, or water drinks. Thirty-five minutes after ingestion, they cycled for fifteen minutes at 75% peak oxygen uptake in a hot environment (30 °C, 40% relative humidity). Sucrose ingestion induced greater blood glucose concentration and insulin secretion at the pre-exercise state, compared with isomaltulose and/or water trials, with no differences during exercise in blood glucose. Change in plasma volume did not differ between the three trials throughout the experiment, but both sucrose and isomaltulose ingestions similarly increased plasma osmolality, as compared with water (main beverage effect, p = 0.040)-a key response that potentially delays the onset of heat loss responses. However, core temperature thresholds and slopes for heat loss responses were not different between the trials during exercise. These results suggest that ingestion of isomaltulose beverages induces low glycemic and insulinemic states before exercise but does not alter thermoregulatory responses during exercise in a hot environment, compared with sucrose or water.


Assuntos
Regulação da Temperatura Corporal , Isomaltose , Ingestão de Alimentos , Exercício Físico , Temperatura Alta , Humanos , Isomaltose/análogos & derivados , Masculino
10.
Exp Physiol ; 106(7): 1508-1523, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33899281

RESUMO

NEW FINDINGS: What is the central question of this study? Do sex and menstrual cycle modulate sweating during isometric handgrip exercise and muscle metaboreceptor stimulation? What is the main finding and its importance? Sex modulates sweating during isometric handgrip exercise, as indicated by the lower sweat output per gland in women than in men, but not during muscle metaboreceptor stimulation. Sweat output per gland during isometric handgrip exercise and muscle metaboreceptor stimulation were lower in the mid-luteal phase than in the early follicular phase in women. Cholinergic sweat gland sensitivity might explain, in part, the individual variation of the response. Our results provide new insights regarding sex- and menstrual cycle-related modulation of the sweating response. ABSTRACT: We investigated whether sex and menstrual cycle could modulate sweating during isometric handgrip (IH) exercise and muscle metaboreceptor stimulation. Twelve young, healthy women in the early follicular (EF) and mid-luteal (ML) phases and 14 men underwent two experimental sessions consisting of a 1.5 min IH exercise at 25 and 50% of maximal voluntary contraction (MVC) in a hot environment (35°C, relative humidity 50%) followed by 2 min forearm occlusion to stimulate muscle metaboreceptors. Sweat rates, the number of activated sweat glands and the sweat output per gland (SGO) on the forearm and chest were assessed. Pilocarpine-induced sweating was also assessed via transdermal iontophoresis to compare the responses with those of IH exercise and muscle metaboreceptor stimulation, based on correlation analysis. Sweat rates on the forearm and chest during IH exercise and muscle metaboreceptor stimulation did not differ between men and women in either menstrual cycle phase (all P ≥ 0.144). However, women in both phases showed lower SGO on the forearm and/or chest compared with men during IH exercise at 50% of MVC, with no differences in muscle metaboreceptor stimulation. Women in the ML phase had a lower forearm sweat rate during IH exercise at 50% of MVC (P = 0.015) and SGO during exercise and muscle metaboreceptor stimulation (main effect, both P ≤ 0.003) compared with those in the EF phase. Overall, sweat rate and SGO during IH exercise and muscle metaboreceptor stimulation were correlated with pilocarpine-induced responses (all P ≤ 0.064, r ≥ 0.303). We showed that sex and menstrual cycle modulate sudomotor activity during IH exercise and/or muscle metaboreceptor stimulation. Cholinergic sweat gland sensitivity might explain, in part, the individual variation of the response.


Assuntos
Antebraço , Sudorese , Exercício Físico/fisiologia , Feminino , Antebraço/fisiologia , Força da Mão/fisiologia , Humanos , Masculino , Ciclo Menstrual
11.
Am J Physiol Regul Integr Comp Physiol ; 319(5): R584-R591, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966123

RESUMO

We evaluated the hypothesis that the activation of L-type voltage-gated Ca2+ channels contributes to exercise training-induced augmentation in cholinergic sweating. On separate days, 10 habitually trained and 10 untrained men participated in two experimental protocols. Prior to each protocol, we administered 1% verapamil (Verapamil, L-type voltage-gated Ca2+ channel blocker) and saline (Control) at forearm skin sites on both arms via transdermal iontophoresis. In protocol 1, we administered low (0.001%) and high (1%) doses of pilocarpine at both the verapamil-treated and verapamil-untreated forearm sites. In protocol 2, participants were passively heated by immersing their limbs in hot water (43°C) until rectal temperature increased by 1.0°C above baseline resting levels. Sweat rate at all forearm sites was continuously measured throughout both protocols. Pilocarpine-induced sweating in Control was higher in trained than in untrained men for both the concentrations of pilocarpine (both P ≤ 0.001). Pilocarpine-induced sweating at the low-dose site was attenuated at the Verapamil versus the Control site in both the groups (both P ≤ 0.004), albeit the reduction was greater in trained as compared with in untrained men (P = 0.005). The verapamil-mediated reduction in sweating remained intact at the high-dose pilocarpine site in the untrained men (P = 0.004) but not the trained men (P = 0.180). Sweating did not differ between Control and Verapamil sites with increases in rectal temperature in both groups (interaction, P = 0.571). We show that activation of L-type voltage-gated Ca2+ channels modulates sweat production in habitually trained men induced by a low dose of pilocarpine. However, no effect on sweating was observed during passive heating in either group.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Exercício Físico , Temperatura Alta , Sudorese/efeitos dos fármacos , Verapamil/farmacologia , Adulto , Bloqueadores dos Canais de Cálcio/farmacologia , Humanos , Masculino , Agonistas Muscarínicos/farmacologia , Pilocarpina/farmacologia
12.
Carbohydr Res ; 473: 99-103, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30658252

RESUMO

ß-d-Galactofuranose (Galf) is a component of polysaccharides and glycoconjugates. There are few reports about the involvement of galactofuranosyltransferases and galactofuranosidases (Galf-ases) in the synthesis and degradation of galactofuranose-containing glycans. The cell walls of filamentous fungi in the genus Aspergillus include galactofuranose-containing polysaccharides and glycoconjugates, such as O-glycans, N-glycans, and fungal-type galactomannan, which are important for cell wall integrity. In this study, we investigated the synthesis of p-nitrophenyl ß-d-galactofuranoside and its disaccharides by chemo-enzymatic methods including use of galactosidase. The key step was selective removal of the concomitant pyranoside by enzymatic hydrolysis to purify p-nitrophenyl ß-d-galactofuranoside, a promising substrate for ß-d-galactofuranosidase from Streptomyces species.


Assuntos
Aspergillus/química , Dissacarídeos/química , Dissacarídeos/síntese química , Galactosidases/metabolismo , Mananas/química , Técnicas de Química Sintética , Galactose/análogos & derivados , Hidrólise , Especificidade por Substrato
13.
Masui ; 52(11): 1191-4, 2003 Nov.
Artigo em Japonês | MEDLINE | ID: mdl-14661564

RESUMO

BACKGROUND: Lactate is a very sensitive marker of outcomes in critically ill patients. The aim of this study was to investigate the significance of blood lactate measurement during fast-track cardiac anesthesia. METHODS: We examined arterial blood lactate levels of 12 patients following coronary artery bypass graft surgery under intermittent aortic cross clamping with fast-track cardiac anesthesia. Anesthesia was induced with propofol and fentanyl, and maintained with propofol, fentanyl (total 400-1000 micrograms) and isoflurane. Blood samples were collected from a radical artery catheter. RESULTS: At the termination of the extracorporeal circulation, the blood lactate was 10.3 +/- 2.0 (7.4-12.5) mmol.l-1. This value decreased slowly to 1.5 +/- 0.4 mmol.l-1 on the second postoperative day. All patients were extubated within 4 hours after surgery. Vital signs were stable, and no cardiac events occurred perioperatively. CONCLUSIONS: A continuous decline in blood lactate levels was related to a favorable postoperative course. Further research might be required to prevent transient hyperlactecemia at the end of cardiopulmonary bypass.


Assuntos
Anestesia Geral/efeitos adversos , Ponte de Artéria Coronária , Ácido Láctico/sangue , Idoso , Anestesia Geral/métodos , Biomarcadores/sangue , Ponte Cardiopulmonar/efeitos adversos , Feminino , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória , Prognóstico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...