Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 72(7): 2570-2583, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33481019

RESUMO

Understanding the limiting factors of grain filling is essential for the further improvement of grain yields in rice (Oryza sativa). The relatively slow grain growth of the high-yielding cultivar 'Momiroman' is not improved by increasing carbon supply, and hence low sink activity (i.e. the metabolic activity of assimilate consumption/storage in sink organs) may be a limiting factor for grain filling. However, there is no metabolic evidence to corroborate this hypothesis, partly because there is no consensus on how to define and quantify sink activity. In this study, we investigated the carbon flow at a metabolite level from photosynthesis in leaves to starch synthesis in grains of three high-yielding cultivars using the stable isotope 13C. We found that a large amount of newly fixed carbon assimilates in Momiroman was stored as hexose instead of being converted to starch. In addition, the activity of ADP-glucose pyrophosphorylase and the expression of AGPS2b, which encodes a subunit of the ADP-glucose pyrophosphorylase enzyme, were both lower in Momiroman than in the other two cultivars in grains in superior positions on panicle branches. Hence, slower starch synthesis from hexose, which is partly explained by the low expression level of AGPS2b, may be the primary metabolic reason for the lower sink activity observed in Momiroman.


Assuntos
Oryza , Amido/biossíntese , Carbono , Hexoses , Oryza/metabolismo , Proteínas de Plantas/metabolismo
2.
Plant Sci ; 253: 40-49, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27968995

RESUMO

Sucrose phosphate synthase (SPS) has been shown to mediate sucrose/starch ratio in plant leaves through studies of 'starch leaf' species that mainly accumulate starch in their leaves. However, the contribution of SPS to sucrose/starch ratio in rice leaves, which mainly accumulate sucrose (i.e., 'sugar leaf'), has not been confirmed due to inconsistencies in the results of previous studies. In this study, we analyzed mutant lines with reduced SPS activity, which were generated using Tos17 insertion, RNAi, and the CRISPR/Cas9 system. The knockdown and knockout mutants of OsSPS1 showed a 29-46% reduction in SPS activity in the leaves, but the carbohydrate content in the leaves and plant growth were not significantly different from those of wild-type plants. In a double knockout mutant of OsSPS1 and OsSPS11 (sps1/sps11), an 84% reduction in leaf SPS activity resulted in higher starch accumulation in the leaves than in the wild-type leaves. However, the sps1/sps11 plants grew normally, which is in contrast to the inhibited growth of SPS mutants of Arabidopsis thaliana, a typical starch leaf plant. These results suggest that SPS has a smaller effect on the sucrose/starch ratio in leaves and growth of rice than on starch leaf species.


Assuntos
Metabolismo dos Carboidratos , Glucosiltransferases/metabolismo , Oryza/enzimologia , Desenvolvimento Vegetal , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dados de Sequência Molecular , Oryza/genética , Oryza/crescimento & desenvolvimento , Interferência de RNA
3.
Plant Sci ; 238: 170-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26259185

RESUMO

Phytic acid (myo-inositol hexakisphosphate; InsP6) is the storage compound of phosphorus and many mineral elements in seeds. To determine the role of InsP6 in the accumulation and distribution of mineral elements in seeds, we performed fine mappings of mineral elements through synchrotron-based X-ray microfluorescence analysis using developing seeds from two independent low phytic acid (lpa) mutants of rice (Oryza sativa L.). The reduced InsP6 in lpa seeds did not affect the translocation of mineral elements from vegetative organs into seeds, because the total amounts of phosphorus and the other mineral elements in lpa seeds were identical to those in the wild type (WT). However, the reduced InsP6 caused large changes in mineral localization within lpa seeds. Phosphorus and potassium in the aleurone layer of lpa greatly decreased and diffused into the endosperm. Zinc and copper, which were broadly distributed from the aleurone layer to the inner endosperm in the WT, were localized in the narrower space around the aleurone layer in lpa mutants. We also confirmed that similar distribution changes occurred in transgenic rice with the lpa phenotype. Using these results, we discussed the role of InsP6 in the dynamic accumulation and distribution patterns of mineral elements during seed development.


Assuntos
Elementos Químicos , Minerais/metabolismo , Oryza/metabolismo , Ácido Fítico/metabolismo , Sementes/metabolismo , Mutação/genética , Fenótipo , Fósforo/metabolismo , Plantas Geneticamente Modificadas , Característica Quantitativa Herdável
4.
Plant Cell Environ ; 38(7): 1255-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25496090

RESUMO

In rice (Oryza sativa L.), chilling-induced male sterility increased when plants experienced low water temperature (Tw , 18 °C for 14 d) before panicle initiation. The number of mature pollen grains after chilling at the booting stage (12 °C for 5 d) was only 45% of total pollen grains in low-Tw plants, whereas it was 71% in normal-Tw plants (Tw not controlled; approximately 23 °C under air temperature of 26 °C/21 °C, day/night). Microarray and quantitative PCR analyses showed that many stress-responsive genes (including OsFKBP65 and genes encoding the large heat shock protein OsHSP90.1, heat-stress transcription factors and many small heat shock proteins) were strongly up-regulated by chilling in normal-Tw spikelets, but were unaffected or even down-regulated by chilling in low-Tw spikelets. OsAPX2 and genes encoding some other antioxidant enzymes were also significantly down-regulated by low Tw in chilled spikelets. The levels of lipid peroxidation products (malondialdehyde equivalents) were significantly increased in low-Tw spikelets by chilling. Ascorbate peroxidase activity in chilled spikelets was significantly lower in low-Tw plants than in normal-Tw plants. Our data suggest that an OsFKBP65-related chilling response, which protects proteins from oxidative damage, is indispensable for chilling tolerance but is lost in low-Tw spikelets.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Ácido Abscísico/metabolismo , Temperatura Baixa , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/metabolismo , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Estresse Oxidativo , Reguladores de Crescimento de Plantas/metabolismo , Infertilidade das Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/fisiologia , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Água/fisiologia
5.
Plant Sci ; 225: 102-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25017165

RESUMO

The molecular function of an isoform of sucrose phosphate synthase (SPS) in rice, OsSPS1, was investigated using gene-disruption mutant lines generated by retrotransposon insertion. The progeny of the heterozygote of disrupted OsSPS1 (SPS1(+/-)) segregated into SPS1(+/+), SPS1(+/-), and SPS1(-/-) at a ratio of 1:1:0. This distorted segregation ratio, together with the expression of OsSPS1 in the developing pollen revealed by quantitative RT-PCR analysis and promoter-beta-glucuronidase (GUS) fusion assay, suggested that the disruption of OsSPS1 results in sterile pollen. This hypothesis was reinforced by reciprocal crosses of SPS1(+/-) plants with wild-type plants in which the disrupted OsSPS1 was not paternally transmitted to the progeny. While the pollen grains of SPS(+/-) plants normally accumulated starch during their development, pollen germination on the artificial media was reduced to half of that observed in the wild-type control. Overall, our data suggests that sucrose synthesis via OsSPS1 is essential in pollen germination in rice.


Assuntos
Genes de Plantas , Glucosiltransferases/genética , Mutação , Oryza/genética , Proteínas de Plantas/genética , Pólen/metabolismo , Sacarose/metabolismo , Cruzamentos Genéticos , Glucosiltransferases/metabolismo , Heterozigoto , Oryza/enzimologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Retroelementos , Amido/metabolismo
6.
Rice (N Y) ; 7(1): 32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26224561

RESUMO

BACKGROUND: To identify genes that potentially regulate the accumulation, mobilization, and transport of photoassimilates in rice (Oryza sativa L.) leaves, we recently screened a mutant collection of rice by iodine staining to visualize leaf starch contents. From this screening, we isolated a rice mutant that exhibits hyperaccumulation of starch in leaves and designated it as the Leaf Starch Excess 1 (LSE1) mutant. Here, we report two other rice LSE mutants, LSE2 and LSE3. RESULTS: Unlike lse1 plants, lse2 and lse3 plants displayed retarded growth; lse2 showed an extremely dwarf phenotype and rarely survived in paddy fields; lse3 showed inhibited growth with pale green leaf blades, low tiller numbers, reduced height, and low grain yield. In lse2 and lse3 plants, the mature source leaves contained larger amounts of starch and sucrose than those in wild-type and lse1 plants. Furthermore, microscopic observations of leaf transverse sections indicated that hyperaccumulation of starch in chloroplasts of mesophyll and bundle sheath cells occurred in lse2 and lse3 plants, while that in vascular cells was noticeable only in lse3 leaves. CONCLUSIONS: The distinct phenotypes of these three LSE mutants suggest that the LSE2 and LSE3 mutations occur because of disruption of novel genes that might be involved in the path of sucrose transport from mesophyll cells to phloem sieve elements in rice leaves, the mechanism for which has not yet been elucidated.

7.
Funct Plant Biol ; 42(1): 31-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480651

RESUMO

In rice (Oryza sativa L.), tiller angle - defined as the angle between the main culm and its side tillers - is one of the important factors involved in light use efficiency. To clarify the relationship between tiller angle, gravitropism and stem-starch accumulation, we investigated the shoot gravitropic response of a low stem-starch rice mutant which lacks a large subunit of ADP-glucose pyrophosphorylase (AGP), called OsAGPL1 and exhibits relatively spread tiller angle. The insensitive gravitropic response exhibited by the mutant led us to the conclusion that insensitivity of gravitropism caused by stem-starch reduction splayed the tiller angle. Furthermore, since another AGP gene called OsAGPL3 was expressed at considerable levels in graviresponding sites, we generated a double mutant lacking both OsAGPL1 and OsAGPL3. The double mutant exhibited still lower stem-starch content, less sensitive gravitropic response and greater tiller angle spread than the single mutants. This indicated that the expansion of the tiller angle caused by the reduction in starch level was intense according to the extent of the reduction. We found there were no significant differences between the double mutant and wild-type plants in terms of dry matter production. These results provided new insight into the importance of stem-starch accumulation and ideal plant architecture.

8.
Front Plant Sci ; 4: 147, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23750161

RESUMO

To identify potential regulators of photoassimilate partitioning, we screened for rice mutant plants that accumulate high levels of starch in the leaf blades, and a mutant line leaf starch excess 1 (LSE1) was obtained and characterized. The starch content in the leaf blades of LSE1 was more than 10-fold higher than that in wild-type plants throughout the day, while the sucrose content was unaffected. The gene responsible for the LSE1 phenotype was identified by gene mapping to be a gene encoding α-glucan water dikinase, OsGWD1 (Os06g0498400), and a 3.4-kb deletion of the gene was found in the mutant plant. Despite the hyperaccumulation of starch in their leaf blades, LSE1 plants exhibited no significant change in vegetative growth, presenting a clear contrast to the reported mutants of Arabidopsis thaliana and Lotus japonicus in which disruption of the genes for α-glucan water dikinase leads to marked inhibition of vegetative growth. In reproductive growth, however, LSE1 exhibited fewer panicles per plant, lower percentage of ripened grains and smaller grains; consequently, the grain yield was lower in LSE1 plants than in wild-type plants by 20~40%. Collectively, although α-glucan water dikinase was suggested to have universal importance in leaf starch degradation in higher plants, the physiological priority of leaf starch in photoassimilate allocation may vary among plant species.

9.
Front Plant Sci ; 4: 31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460029

RESUMO

Although sucrose plays a role in sugar sensing and its signaling pathway, little is known about the regulatory mechanisms of the expressions of plant sucrose-related genes. Our previous study on the expression of the sucrose phosphate synthase gene family in rice (OsSPSs) suggested the involvement of sucrose sensing and/or circadian rhythm in the transcriptional regulation of OsSPS. To examine whether the promoters of OsSPSs can be controlled by sugars and circadian clock, we produced transgenic rice plants harboring a promoter-luciferase construct for OsSPS1 or OsSPS11 and analyzed the changes in the promoter activities by monitoring bioluminescence from intact transgenic plants in real-time. Transgenic plants fed sucrose, glucose, or mannitol under continuous light conditions showed no changes in bioluminescence intensity; meanwhile, the addition of sucrose increased the concentration of sucrose in the plants, and the mRNA levels of OsSPS remained constant. These results suggest that these OsSPS promoters may not be regulated by sucrose levels in the tissues. Next, we investigated the changes in the promoter activities under 12-h light/12-h dark cycles and continuous light conditions. Under the light-dark cycle, both OsSPS1 and OsSPS11 promoter activities were low in the dark and increased rapidly after the beginning of the light period. When the transgenic rice plants were moved to the continuous light condition, both P OsSPS1 ::LUC and P OsSPS11 ::LUC reporter plants exhibited circadian bioluminescence rhythms; bioluminescence peaked during the subjective day with a 27-h period: in the early morning as for OsSPS1 promoter and midday for OsSPS11 promoter. These results indicate that these OsSPS promoters are controlled by both light illumination and circadian clock and that the regulatory mechanism of promoter activity differs between the two OsSPS genes.

10.
Funct Plant Biol ; 40(11): 1137-1146, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32481181

RESUMO

Starch accumulated in rice (Oryza sativa L.) stems before heading as nonstructural carbohydrates (NSCs) is reported to be important for improving and stabilising grain yield. To evaluate the importance of stem starch, we investigated a retrotransposon (Tos17) insertion rice mutant lacking a gene encoding a large subunit of ADP-glucose pyrophosphorylase (AGP) called OsAGPL1 or OsAPL3. The AGP activity and starch contents of the mutant were drastically reduced in the stem (i.e. leaf sheath and culm) but not in the leaf blade or endosperm. This starch reduction in the leaf sheaths of the mutant was complemented by the introduction of wild-type OsAGPL1. These results strongly suggest that OsAGPL1 plays a principal role in stem starch accumulation. Field experimentations spanning 2 years revealed that the mutant plants were shorter than the wild-type plants. Moreover, the tiller number and angle were larger in the mutant plants than the wild-type plants, but the dry weight at heading stage was not different. The grain yield was slightly lower in control plots without shading treatment. However, this difference increased substantially with shading. Therefore, stem starch is indispensable for normal ripening under low irradiance conditions and probably contributes to the maintenance of appropriate plant architecture.

11.
Plant Sci ; 181(2): 159-66, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21683881

RESUMO

The rice genome contains 5 isogenes for sucrose phosphate synthase (SPS), the key enzyme in sucrose synthesis; however, little is known about their transcriptional regulation. In order to determine the expression patterns of the SPS gene family in rice plants, we conducted an expression analysis in various tissues and developmental stages by real-time quantitative RT-PCR. At the transcript level, the rice SPS genes, particularly SPS1, were preferentially expressed in source tissues, whereas SPS2, SPS6, and SPS8 were expressed equally in source and sink tissues. We also investigated diurnal changes in SPS gene expression, SPS activity, and soluble sugar content in leaf blades. Interestingly, the expression of all the SPS genes, particularly that of SPS1 and SPS11, tended to be higher at night when the activation state of the SPS proteins was low, and the mRNA levels of SPS1 and SPS6 were negatively correlated with sucrose content. Furthermore, the temporal patterns of SPS gene expression and sugar content under continuous light conditions suggested the involvement of endogenous rhythm and/or sucrose sensing in the transcriptional regulation of SPS genes. Our data revealed differential expression patterns in the rice SPS gene family and part of the complex mechanisms of their transcriptional control.


Assuntos
Ritmo Circadiano/genética , Regulação Enzimológica da Expressão Gênica/genética , Glucosiltransferases/genética , Oryza/fisiologia , Carboidratos/análise , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Germinação , Glucosiltransferases/metabolismo , Luz , Família Multigênica/genética , Especificidade de Órgãos/genética , Oryza/enzimologia , Oryza/genética , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...