Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(11): e1011747, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910490

RESUMO

Buruli ulcer is an emerging chronic infectious skin disease caused by Mycobacterium ulcerans. Mycolactone, an exotoxin produced by the bacterium, is the only identified virulence factor so far, but the functions of this toxin and the mechanisms of disease progression remain unclear. By interfering Sec61 translocon, mycolactone inhibits the Sec61-dependent co-translational translocation of newly synthesized proteins, such as induced cytokines and immune cell receptors, into the endoplasmic reticulum. However, in regard to IL-1ß, which is secreted by a Sec61-independent mechanism, mycolactone has been shown to induce IL-1ß secretion via activation of inflammasomes. In this study, we clarified that cytokine induction, including that of IL-1ß, in infected macrophages was suppressed by mycolactone produced by M. ulcerans subsp. shinshuense, despite the activation of caspase-1 through the inflammasome activation triggered in a manner independent of mycolactone. Intriguingly, mycolactone suppressed the expression of proIL-1ß as well as TNF-α at the transcriptional level, suggesting that mycolactone of M. ulcerans subsp. shinshuense may exert additional inhibitory effect on proIL-1ß expression. Remarkably, constitutively produced IL-18 was cleaved and mature IL-18 was actually released from macrophages infected with the causative mycobacterium. IL-18-deficient mice infected subcutaneously with M. ulcerans exhibited exacerbated skin inflammation during the course of disease progression. On the other hand, IL-1ß controls bacterial multiplication in skin tissues. These results provide information regarding the mechanisms and functions of the induced cytokines in the pathology of Buruli ulcer.


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Animais , Camundongos , Úlcera de Buruli/microbiologia , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Mycobacterium ulcerans/metabolismo , Macrolídeos/metabolismo , Citocinas/metabolismo , Progressão da Doença , Inflamação
2.
Eur J Immunol ; 53(11): e2350455, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37471504

RESUMO

Caspase activation results in pyroptosis, an inflammatory cell death that contributes to several inflammatory diseases by releasing inflammatory cytokines and cellular contents. Fusobacterium nucleatum is a periodontal pathogen frequently detected in human cancer and inflammatory bowel diseases. Studies have reported that F. nucleatum infection leads to NLRP3 activation and pyroptosis, but the precise activation process and disease association remain poorly understood. This study demonstrated that F. nucleatum infection exacerbates acute colitis in mice and activates pyroptosis through caspase-11-mediated gasdermin D cleavage in macrophages. Furthermore, F. nucleatum infection in colitis mice induces the enhancement of IL-1⍺ secretion from the colon, affecting weight loss and severe disease activities. Neutralization of IL-1⍺ protects F. nucleatum infected mice from severe colitis. Therefore, F. nucleatum infection facilitates inflammation in acute colitis with IL-1⍺ from colon tissue by activating noncanonical inflammasome through gasdermin D cleavage.


Assuntos
Colite , Inflamassomos , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Fusobacterium nucleatum/metabolismo , Gasderminas , Colite/induzido quimicamente , Caspases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
Biochem Biophys Res Commun ; 560: 179-185, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34000467

RESUMO

The gastrointestinal tract of the human body is characterized by a highly unique oxygenation profile, where the oxygen concentration decreases toward the lower tract, not found in other organs. The epithelial cells lining the mucosa where Helicobacter pylori resides exist in a relatively low oxygen environment with a partial pressure of oxygen (pO2) below 58 mm Hg. However, the contribution of hypoxia to H. pylori-induced host immune responses remains elusive. In this study, we investigated the inflammasome activation induced by H. pylori under hypoxic, compared with normoxic, conditions. Our results indicated that the activation of caspase-1 and the subsequent secretion of IL-1ß were significantly enhanced in infected macrophages under 1% oxygen, compared with those under a normal 20% oxygen concentration. The proliferation of H. pylori under aerobic conditions was 3-fold higher than under microaerophilic conditions, and the bacterial growth was more dependent on CO2 than on oxygen. Also, we observed that hypoxia-induced cytokine production as well as HIF-1α accumulation were both decreased when murine macrophages were treated with an HIF-1α inhibitor, KC7F2. Furthermore, hypoxia enhanced the phagocytosis of H. pylori in an HIF-1α-dependent manner. IL-1ß production was also affected by the HIF-1α inhibitor in a mouse infection model, suggesting the important role of HIF-1α in the host defense system during infection with H. pylori. Our findings provide new insights into the intersection of low oxygen, H. pylori, and inflammation and disclosed how H. pylori under low oxygen tension can aggravate IL-1ß secretion.


Assuntos
Infecções por Helicobacter/imunologia , Helicobacter pylori/fisiologia , Inflamassomos/metabolismo , Animais , Hipóxia Celular , Células Cultivadas , Citocinas/metabolismo , Infecções por Helicobacter/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/imunologia , Macrófagos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Fagocitose
4.
Nat Commun ; 12(1): 2085, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837194

RESUMO

Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. However, the mechanisms by which the bacteria adapt to the stomach environment are poorly understood. Here, we show that a small non-coding RNA of H. pylori (HPnc4160, also known as IsoB or NikS) regulates the pathogen's adaptation to the host environment as well as bacterial oncoprotein production. In a rodent model of H. pylori infection, the genomes of bacteria isolated from the stomach possess an increased number of T-repeats upstream of the HPnc4160-coding region, and this leads to reduced HPnc4160 expression. We use RNA-seq and iTRAQ analyses to identify eight targets of HPnc4160, including genes encoding outer membrane proteins and oncoprotein CagA. Mutant strains with HPnc4160 deficiency display increased colonization ability of the mouse stomach, in comparison with the wild-type strain. Furthermore, HPnc4160 expression is lower in clinical isolates from gastric cancer patients than in isolates derived from non-cancer patients, while the expression of HPnc4160's targets is higher in the isolates from gastric cancer patients. Therefore, the small RNA HPnc4160 regulates H. pylori adaptation to the host environment and, potentially, gastric carcinogenesis.


Assuntos
Adaptação Fisiológica/genética , Infecções por Helicobacter/patologia , Helicobacter pylori/fisiologia , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Neoplasias Gástricas/microbiologia , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Carcinogênese , Modelos Animais de Doenças , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano/genética , Gerbillinae , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/patogenicidade , Interações entre Hospedeiro e Microrganismos , Humanos , Masculino , Mutação , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , RNA-Seq , Neoplasias Gástricas/patologia
5.
Front Cell Infect Microbiol ; 11: 745117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096633

RESUMO

Preventing adverse pregnancy outcomes is crucial for maternal and child health. Periodontal disease is a risk factor for many systemic diseases including adverse pregnancy outcomes, such as preterm birth and low birth weight. In addition, the administration of the periodontopathic bacterium Porphyromonas gingivalis exacerbates obesity, glucose tolerance, and hepatic steatosis and alters endocrine function in the brown adipose tissue (BAT). However, the effects of having periodontal disease during pregnancy remain unclear. Thus, this study investigates the effect of P. gingivalis administration on obesity, liver, and BAT during pregnancy. Sonicated P. gingivalis (Pg) or saline (Co) was injected intravenously and administered orally to pregnant C57BL/6J mice three times per week. Maternal body weight and fetal body weight on embryonic day (ED) 18 were evaluated. Microarray analysis and qPCR in the liver and BAT and hepatic and plasma triglyceride quantification were performed on dams at ED 18. The body weight of Pg dams was heavier than that of Co dams; however, the fetal body weight was decreased in the offspring of Pg dams. Microarray analysis revealed 254 and 53 differentially expressed genes in the liver and BAT, respectively. Gene set enrichment analysis exhibited the downregulation of fatty acid metabolism gene set in the liver and estrogen response early/late gene sets in the BAT, whereas inflammatory response and IL6/JAK/STAT3 signaling gene sets were upregulated both in the liver and BAT. The downregulation of expression levels of Lpin1, Lpin2, and Lxra in the liver, which are associated with triglyceride synthesis, and a decreasing trend in hepatic triglyceride of Pg dams were observed. P. gingivalis administration may alter lipid metabolism in the liver. Overall, the intravenous and oral administration of sonicated P. gingivalis-induced obesity and modified gene expression in the liver and BAT in pregnant mice and caused fetuses to be underweight.


Assuntos
Porphyromonas gingivalis , Nascimento Prematuro , Tecido Adiposo Marrom , Animais , Feminino , Feto , Expressão Gênica , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Fosfatidato Fosfatase/genética , Porphyromonas gingivalis/genética , Gravidez , Magreza
6.
Sci Rep ; 10(1): 3251, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094510

RESUMO

Group A Streptococcus (GAS) secretes deoxyribonucleases and evades neutrophil extracellular killing by degrading neutrophil extracellular traps (NETs). However, limited information is currently available on the interaction between GAS and NETs in the pathogenicity of GAS pharyngitis. In this study, we modified a mouse model of GAS pharyngitis and revealed an essential role for DNase in this model. After intranasal infection, the nasal mucosa was markedly damaged near the nasal cavity, at which GAS was surrounded by neutrophils. When neutrophils were depleted from mice, GAS colonization and damage to the nasal mucosa were significantly decreased. Furthermore, mice infected with deoxyribonuclease knockout GAS mutants (∆spd, ∆endA, and ∆sdaD2) survived significantly better than those infected with wild-type GAS. In addition, the supernatants of digested NETs enhanced GAS-induced cell death in vitro. Collectively, these results indicate that NET degradation products may contribute to the establishment of pharyngeal infection caused by GAS.


Assuntos
DNA/química , Armadilhas Extracelulares , Faringite/microbiologia , Faringe/microbiologia , Infecções Estreptocócicas/patologia , Animais , Apoptose , Desoxirribonucleases/metabolismo , Modelos Animais de Doenças , Humanos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neutrófilos/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Streptococcus pyogenes
7.
Front Microbiol ; 10: 2406, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708887

RESUMO

Clostridium perfringens (C. perfringens) is Gram-positive anaerobic, spore-forming rod-shaped bacterial pathogen that is widely distributed in nature. This bacterium is known as the causative agent of a foodborne illness and of gas gangrene. While the major virulence factors are the α-toxin and perfringolysin O (PFO) produced by type A strains of C. perfringens, the precise mechanisms of how these toxins induce the development of gas gangrene are still not well understood. In this study, we analyzed the host responses to these toxins, including inflammasome activation, using mouse bone marrow-derived macrophages (BMDMs). Our results demonstrated, for the first time, that C. perfringens triggers the activation of caspase-1 and release of IL-1ß through PFO-mediated inflammasome activation via a receptor of the Nod-like receptor (NLR) family, pyrin-domain containing 3 protein (NLRP3). The PFO-mediated inflammasome activation was not induced in the cultured myocytes. We further analyzed the functional roles of the toxins in inducing myonecrosis in a mouse model of gas gangrene. Although the myonecrosis was found to be largely dependent on the α-toxin, PFO also induced myonecrosis to a lesser extent, again through the mediation of NLRP3. These results suggest that C. perfringens triggers inflammatory responses via PFO-mediated inflammasome activation via NLRP3, and that this axis contributes in part to the progression of gas gangrene. Our findings provide a novel insight into the molecular mechanisms underlying the pathogenesis of gas gangrene caused by C. perfringens.

8.
Sci Technol Adv Mater ; 20(1): 589-598, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258824

RESUMO

Periodontitis is a chronic inflammatory disease caused by oral microorganisms in the subgingival biofilm. Stable aqueous ozone ultrafine bubble water (OUFBW) has recently begun to be used as an antiseptic in the treatment of periodontitis. The effectiveness of OUFBW is thought to depend on the bactericidal actions of dissolved ozone exerted via its oxidizing effect. On the other hand, the effects of ozone on the periodontal tissues are largely unknown. In this paper we examined the cellular responses after OUFBW treatment. Human primary periodontal ligament fibroblasts (hPDLFs) or Ca9-22 human gingival epithelial cells were treated with OUFBW or UV-inactivated OUFBW. The production of reactive oxygen species (ROS), the activation of mitogen-activated protein kinase (MAPK) and the nuclear factor-kappa B (NF-κB) activation were analyzed. The transcript profiles of hPDLFs after OUFBW treatment were also analyzed by RNA sequencing (RNA-seq). Our results showed that OUFBW induces oxidative stress by generating ROS, which, in turn, activated the MAPK pathway. OUFBW triggered activation of c-Fos, a major component of the transcription factor activator protein 1 (AP-1), and also nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), which possessed a high sensitivity to oxidative stress. The results of RNA-seq analysis revealed that the numerous genes involved in oxidative stress responses or MAPK signaling pathway were up-regulated after OUFBW treatment. Investigation of the signaling pathways activated by OUFBW highlights another aspect of the biological roles of OUFBW, in addition to its bactericidal activity, in the treatment of periodontitis.

9.
Eur J Immunol ; 48(12): 1965-1974, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30280383

RESUMO

Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that has been considered to be one of the bacteria associated with progression of human periodontitis. Subgingival biofilms formed by bacteria, including P. gingivalis, induce chronic inflammation, and activation of inflammasome in the gingival tissue. However, the mechanisms of P. gingivalis-triggering inflammasome activation and the role of bacteria-host interactions are controversial. In this study, we investigated the potential of P. gingivalis for triggering inflammasome activation in human cells and mouse models. We demonstrated that secreted or released factors from bacteria are involved in triggering NLR family, pyrin-domain containing 3 protein (NLRP3) inflammasome in a gingipain-independent manner. Our data indicated that released active caspase-1 and mature IL-1ß are eliminated by proteolytic activity of secreted gingipains. These results elucidate the molecular bases for the mechanisms underlying P. gingivalis-triggered inflammasome activation.


Assuntos
Adesinas Bacterianas/metabolismo , Infecções por Bacteroidaceae/imunologia , Cisteína Endopeptidases/metabolismo , Inflamassomos/metabolismo , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Periodontite/imunologia , Porphyromonas gingivalis/fisiologia , Animais , Caspase 1/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Cisteína Endopeptidases Gingipaínas , Interações Hospedeiro-Patógeno , Humanos , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Células THP-1
10.
Cell Host Microbe ; 23(2): 254-265.e7, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29447697

RESUMO

The AIM2 inflammasome is activated by DNA, leading to caspase-1 activation and release of pro-inflammatory cytokines interleukin 1ß (IL-1ß) and IL-18, which are critical mediators in host innate immune responses against various pathogens. Some viruses employ strategies to counteract inflammasome-mediated induction of pro-inflammatory cytokines, but their in vivo relevance is less well understood. Here we show that the herpes simplex virus 1 (HSV-1) tegument protein VP22 inhibits AIM2-dependent inflammasome activation. VP22 interacts with AIM2 and prevents its oligomerization, an initial step in AIM2 inflammasome activation. A mutant virus lacking VP22 (HSV-1ΔVP22) activates AIM2 and induces IL-1ß and IL-18 secretion, but these responses are lost in the absence of AIM2. Additionally, HSV-1ΔVP22 infection results in diminished viral yields in vivo, but HSV-1ΔVP22 replication is largely restored in AIM2-deficient mice. Collectively, these findings reveal a mechanism of HSV-1 evasion of the host immune response that enables efficient viral replication in vivo.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 1/crescimento & desenvolvimento , Inflamassomos/antagonistas & inibidores , Proteínas Estruturais Virais/genética , Replicação Viral/genética , Animais , Linhagem Celular , Chlorocebus aethiops , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Feminino , Herpesvirus Humano 1/genética , Humanos , Imunidade Inata/imunologia , Inflamassomos/metabolismo , Interleucina-18/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...