Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 15533, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26487499

RESUMO

In typical operation of organic light emitting diodes (OLEDs), excitons are assumed to generate with a ratio of 1:3 for singlet and triplet excitons, respectively, based on a simple spin statistics model. This assumption has been used in designing efficient OLEDs. Despite the larger generation ratio of triplet excitons, physical properties of fluorescent OLEDs are usually evaluated only through the electroluminescence (EL) intensity from singlets and the behaviors of triplets during the LED operation are virtually black-boxed, because the triplets are mostly non-emissive. Here, we employ transient spectroscopy combined with LED-operation for directly monitoring the non-emissive triplets of working OLEDs. The spectroscopic techniques are performed simultaneously with EL- and current measurements under various operation biases. The simultaneous measurements reveal that the relative formation ratio of singlet-to-triplet excitons dramatically changes with the magnitude of bias. The measurements also show that the generation efficiency of singlets scales with the bias, whereas that of triplets is nearly bias-independent. These features of the formation ratio and efficiency are compatibly explained by considering the yield of intersystem crossing and the energy separation of excitons from electron-hole pairs. The obtained findings via the spectroscopic measurements enable prediction of the formation pathways in OLEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...