Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38856765

RESUMO

BACKGROUND: Current treatment of major depressive disorder is facing challenges, including a low remission rate, late onset of efficacy, and worsening severity due to comorbid symptoms such as psychosis and cognitive dysfunction. Serotonin (5-HT) neurotransmission is involved in a wide variety of psychiatric diseases and its potential as a drug target continues to attract attention. OBJECTIVES: The present study elucidates the effects of a novel 5-HT modulator, DSP-6745, on depression and its comorbid symptoms. RESULTS: In vitro radioligand binding and functional assays showed that DSP-6745 is a potent inhibitor of 5-HT transporter and 5-HT2A, 5-HT2C, and 5-HT7 receptors. In vivo, DSP-6745 (6.4 and 19.1 mg/kg as free base, p.o.) increased the release of not only 5-HT, norepinephrine, and dopamine, but also glutamate in the medial prefrontal cortex. The results of in vivo mouse phenotypic screening by SmartCube® suggested that DSP-6745 has a behavioral signature combined with antidepressant-, anxiolytic-, and antipsychotic-like signals. A single oral dose of DSP-6745 (6.4 and 19.1 mg/kg) showed rapid antidepressant-like efficacy in the rat forced swim test, even at 24 h post-dosing, and anxiolytic activity in the rat social interaction test. Moreover, DSP-6745 (12.7 mg/kg, p.o.) led to an improvement in the apomorphine-induced prepulse inhibition deficit in rats. In the marmoset object retrieval with detour task, which is used to assess cognitive functions such as attention and behavioral inhibition, DSP-6745 (7.8 mg/kg, p.o.) enhanced cognition. CONCLUSIONS: These data suggest that DSP-6745 is a multimodal 5-HT receptor antagonist and a 5-HT transporter inhibitor and has the potential to be a rapid acting antidepressant with efficacies in mitigating the comorbid symptoms of depression.

2.
Toxicol Appl Pharmacol ; 388: 114854, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31836524

RESUMO

Repeated-dose toxicity (RDT) studies are one of the critical studies to assess chemical safety. There have been some studies attempting to predict RDT endpoints based on chemical substructures, but it remains very difficult to establish such a method, and a more detailed characterization of chemical compounds seems necessary. Cytochrome P450s (P450s) comprise multiple forms with different substrate specificities and play important roles in both the detoxification and metabolic activation of xenobiotics. In this study, we investigated possible use of P450 reactivity of chemical compounds to classify the compounds. A total of 148 compounds with available rat RDT test data were used as test compounds and subjected to inhibition assays against 18 human and rat P450s. Among the tested compounds, 82 compounds inhibited at least one P450 form. Hierarchical clustering analyses using the P450 inhibitory profiles divided the 82 compounds into nine groups, some of which showed characteristic chemical and biological properties. Principal component analyses of the P450 inhibition data in combination with the calculated chemical descriptors demonstrated that P450 inhibition data were plotted differently than most chemical descriptors in the loading plots. Finally, association analyses between P450 inhibition and RDT endpoints showed that some endpoints related to the liver, kidney and hematology were significantly associated with the inhibition of some P450s. Our present results suggest that the P450 reactivity profiles can be used as novel descriptors for characterizing chemical compounds for the investigation of the toxicity mechanism and/or the establishment of a toxicity prediction model.


Assuntos
Inibidores das Enzimas do Citocromo P-450/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Modelos Biológicos , Testes de Toxicidade/métodos , Animais , Análise por Conglomerados , Simulação por Computador , Conjuntos de Dados como Assunto , Relação Dose-Resposta a Droga , Humanos , Microssomos Hepáticos , Análise de Componente Principal , Ratos
3.
Bioorg Med Chem ; 26(8): 1614-1627, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29456112

RESUMO

We have previously shown that SMP-304, a serotonin uptake inhibitor with weak 5-HT1A partial agonistic activity, may act under high serotonin levels as a 5-HT1A antagonist that improves the onset of paroxetine in the rat swimming test. However, SMP-304 is mostly metabolized by CYP2D6, indicating limited efficacy among individuals and increased side effects. To reduce CYP2D6 metabolic contribution and enhance SERT/5-HT1A binding affinity, we carried out a series of substitutions at the bromine atom in the left part of the benzene ring of SMP-304 and replaced the right part of SMP-304 with a chroman-4-one. This optimization work led to the identification of the antidepressant candidate DSP-1053 as a potent SERT inhibitor with partial 5-HT1A receptor agonistic activity. DSP-1053 showed low CYP2D6 metabolic contribution and a robust increase in serotonin levels in the rat frontal cortex.


Assuntos
Piperidinas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Relação Dose-Resposta a Droga , Descoberta de Drogas , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Ratos , Agonistas do Receptor 5-HT1 de Serotonina/síntese química , Agonistas do Receptor 5-HT1 de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Inibidores Seletivos de Recaptação de Serotonina/química , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 25(1): 293-304, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27865645

RESUMO

We report the discovery of a novel benzylpiperidine derivative with serotonin transporter (SERT) inhibitory activity and 5-HT1A receptor weak partial agonistic activity showing the antidepressant-like effect. The 3-methoxyphenyl group and the phenethyl group of compound 1, which has weak SERT binding activity, but potent 5-HT1A binding activity, were optimized, leading to compound 35 with potent and balanced dual SERT and 5-HT1A binding activity, but also potent CYP2D6 inhibitory activity. Replacement of the methoxy group in the left part of compound 35 with a larger alkoxy group, such as ethoxy, isopropoxy or methoxy-ethoxy group ameliorated CYP2D6 inhibition, giving SMP-304 as a candidate. SMP-304 with serotonin uptake inhibitory activity and 5-HT1A weak partial agonistic activity, which could work as a 5-HT1A antagonist, displayed faster onset of antidepressant-like effect than a representative SSRI paroxetine in an animal model.


Assuntos
Antidepressivos/farmacologia , Dioxanos/farmacologia , Piperidinas/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Antidepressivos/administração & dosagem , Antidepressivos/síntese química , Antidepressivos/farmacocinética , Inibidores do Citocromo P-450 CYP2D6/administração & dosagem , Inibidores do Citocromo P-450 CYP2D6/síntese química , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Dioxanos/administração & dosagem , Dioxanos/síntese química , Dioxanos/farmacocinética , Agonismo Parcial de Drogas , Humanos , Masculino , Piperidinas/administração & dosagem , Piperidinas/síntese química , Piperidinas/farmacocinética , Ratos Wistar , Agonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Agonistas do Receptor 5-HT1 de Serotonina/síntese química , Agonistas do Receptor 5-HT1 de Serotonina/farmacocinética , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Inibidores Seletivos de Recaptação de Serotonina/farmacocinética
5.
J Pharmacol Exp Ther ; 334(1): 171-81, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20404009

RESUMO

Lurasidone [(3aR,4S,7R,7aS)-2-[(1R,2R)-2-[4-(1,2-benzisothiazol-3-yl)piperazin-1-ylmethyl]cyclohexylmethyl]hexahydro-4,7-methano-2H-isoindole-1,3-dione hydrochloride; SM-13496] is an azapirone derivative and a novel antipsychotic candidate. The objective of the current studies was to investigate the in vitro and in vivo pharmacological properties of lurasidone. Receptor binding affinities of lurasidone and several antipsychotic drugs were tested under comparable assay conditions using cloned human receptors or membrane fractions prepared from animal tissue. Lurasidone was found to have potent binding affinity for dopamine D(2), 5-hydroxytryptamine 2A (5-HT(2A)), 5-HT(7), 5-HT(1A), and noradrenaline alpha(2C) receptors. Affinity for noradrenaline alpha(1), alpha(2A), and 5-HT(2C) receptors was weak, whereas affinity for histamine H(1) and muscarinic acetylcholine receptors was negligible. In vitro functional assays demonstrated that lurasidone acts as an antagonist at D(2) and 5-HT(7) receptors and as a partial agonist at the 5-HT(1A) receptor subtype. Lurasidone showed potent effects predictive of antipsychotic activity, such as inhibition of methamphetamine-induced hyperactivity and apomorphine-induced stereotyped behavior in rats, similar to other antipsychotics. Furthermore, lurasidone had only weak extrapyramidal effects in rodent models. In animal models of anxiety disorders and depression, treatment with lurasidone was associated with significant improvement. Lurasidone showed a preferential effect on the frontal cortex (versus striatum) in increasing dopamine turnover. Anti-alpha(1)-noradrenergic, anticholinergic, and central nervous system (CNS) depressant actions of lurasidone were also very weak. These results demonstrate that lurasidone possesses antipsychotic activity and antidepressant- or anxiolytic-like effects with potentially reduced liability for extrapyramidal and CNS depressant side effects.


Assuntos
Antipsicóticos/farmacologia , Isoindóis/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Tiazóis/farmacologia , Animais , Antipsicóticos/efeitos adversos , Antipsicóticos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Dopamina/metabolismo , Cobaias , Humanos , Hipercinese/tratamento farmacológico , Hipercinese/metabolismo , Isoindóis/efeitos adversos , Isoindóis/uso terapêutico , Ligantes , Cloridrato de Lurasidona , Masculino , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptor 5-HT1A de Serotonina/genética , Receptores de Serotonina/genética , Tiazóis/efeitos adversos , Tiazóis/uso terapêutico , Transfecção , Tremor/tratamento farmacológico , Tremor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...