Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(7): e0041224, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38809023

RESUMO

The host immune responses play a pivotal role in the establishment of long-term memory responses, which effectively aids in infection clearance. However, the prevailing anti-tuberculosis therapy, while aiming to combat tuberculosis (TB), also debilitates innate and adaptive immune components of the host. In this study, we explored how the front-line anti-TB drugs impact the host immune cells by modulating multiple signaling pathways and subsequently leading to disease relapse. Administration of these drugs led to a reduction in innate immune activation and also the cytokines required to trigger protective T cell responses. Moreover, these drugs led to activation-induced cell death in the mycobacterial-specific T cell leading to a reduced killing capacity. Furthermore, these drugs stalled the T cell differentiation into memory subsets by modulating the activation of STAT3, STAT4, FOXO1, and NFκB transcription factors and hampering the Th1 and Th17-mediated long-term host protective memory responses. These findings suggest the urgent need to augment directly observed treatment, short-course (DOTS) therapy with immunomodulatory agents to mitigate the adverse effects linked to the treatment.IMPORTANCEAs a central component of TB eradication initiatives, directly observed treatment, short-course (DOTS) therapy imparts immune-dampening effects during the course of treatment. This approach undermines the host immune system by delaying the activation process and lowering the immune response. In our investigation, we have unveiled the impact of DOTS on specific immune cell populations. Notably, the signaling pathways involving STAT3 and STAT4 critical for memory responses and NFκß associated with pro-inflammation were substantially declined due to the therapy. Consequently, these drugs exhibit limited effectiveness in preventing recurrence of the disease. These observations highlight the imperative integration of immunomodulators to manage TB infection.


Assuntos
Antituberculosos , Citocinas , Mycobacterium tuberculosis , Tuberculose , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/imunologia , Tuberculose/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Humanos , Animais , Camundongos , Citocinas/metabolismo , Imunidade Inata/efeitos dos fármacos , Recidiva , Transdução de Sinais/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Feminino , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Células Th17/imunologia , Células Th17/efeitos dos fármacos
2.
Tuberculosis (Edinb) ; 147: 102517, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733881

RESUMO

The extensive inability of the BCG vaccine to produce long-term immune protection has not only accelerated the disease burden but also progressed towards the onset of drug resistance. In our previous study, we have reported the promising effects of Bergenin (Berg) in imparting significant protection as an adjunct immunomodulator against tuberculosis (TB). In congruence with our investigations, we delineated the impact of Berg on T cells, wherein it enhanced adaptive memory responses by modulating key transcription factors, STAT4 and Akt. We translated this finding into the vaccine model of TB and observed a notable reduction in the burden of Mycobacterium tuberculosis (M.tb) in BCG-Berg co-immunized mice as compared to BCG vaccination. Moreover, Berg, along with BCG, also aided in a heightened proinflammatory response milieu that corroborates the host protective immune response against TB. Furthermore, this response aligns with the escalated central and resident memory responses by modulating the Akt-Foxo-Stat4 axis, which plays a crucial role in enhancing the vaccine efficacy of BCG. These findings showcase the utilization of immunomodulator Berg as an immunoprophylactic agent to upgrade immunological memory, making it a more effective defender against TB.


Assuntos
Imunidade Adaptativa , Vacina BCG , Benzopiranos , Memória Imunológica , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis , Proteínas Proto-Oncogênicas c-akt , Fator de Transcrição STAT4 , Transdução de Sinais , Animais , Vacina BCG/imunologia , Vacina BCG/farmacologia , Memória Imunológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mycobacterium tuberculosis/imunologia , Benzopiranos/farmacologia , Fator de Transcrição STAT4/metabolismo , Imunidade Adaptativa/efeitos dos fármacos , Feminino , Tuberculose/imunologia , Tuberculose/microbiologia , Interações Hospedeiro-Patógeno , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...