Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794605

RESUMO

This work inspects the utilization of all-polymer solar cells (APSCs) in indoor applications under LED illumination, with a focus on boosting efficiency through simulation-based design. The study employs a SCAPS TCAD device simulator to investigate the performance of APSCs under white LED illumination at 1000 lux, with a power density of 0.305 mW/cm2. Initially, the simulator is validated against experimental results obtained from a fabricated cell utilizing CD1:PBN-21 as an absorber blend and PEDOT:PSS as a hole transportation layer (HTL), where the initial measured efficiency is 16.75%. The simulation study includes an examination of both inverted and conventional cell structures. In the conventional structure, where no electron transportation layer (ETL) is present, various materials are evaluated for their suitability as the HTL. NiO emerges as the most promising HTL material, demonstrating the potential to achieve an efficiency exceeding 27%. Conversely, in the inverted configuration without an HTL, the study explores different ETL materials to engineer the band alignment at the interface. Among the materials investigated, ZnS emerges as the optimal choice, recording an efficiency of approximately 33%. In order to reveal the efficiency limitations of these devices, the interface and bulk defects are concurrently investigated. The findings of this study underscore the significance of careful material selection and structural design in optimizing the performance of APSCs for indoor applications.

2.
Polymers (Basel) ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37177196

RESUMO

The current study introduces a two-terminal (2T) thin-film tandem solar cell (TSC) comprised of a polymer-based top sub cell and a thin crystalline silicon (c-Si) bottom sub cell. The photoactive layer of the top sub cell is a blend of PDTBTBz-2F as a polymer donor and PC71BM as a fullerene acceptor. Initially, a calibration of the two sub cells is carried out against experimental studies, providing a power conversion efficiency (PCE) of 9.88% for the top sub cell and 14.26% for the bottom sub cell. Upon incorporating both sub cells in a polymer/Si TSC, the resulting cell shows a PCE of 20.45% and a short circuit current density (Jsc) of 13.40 mA/cm2. Then, we optimize the tandem performance by controlling the valence band offset (VBO) of the polymer top cell. Furthermore, we investigate the impact of varying the top absorber defect density and the thicknesses of both absorber layers in an attempt to obtain the maximum obtainable PCE. After optimizing the tandem cell and at the designed current matching condition, the Jsc and PCE of the tandem cell are improved to 16.43 mA/cm2 and 28.41%, respectively. Based on this TCAD simulation study, a tandem configuration established from an all thin-film model may be feasible for wearable electronics applications. All simulations utilize the Silvaco Atlas package where the cells are subjected to standard one Sun (AM1.5G, 1000 W/m2) spectrum illumination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...