Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiol Phys Technol ; 9(2): 286-92, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27260346

RESUMO

Our aim in this study is to derive an identification limit on a dosimeter for not disturbing a medical image when patients wear a small-type optically stimulated luminescence (OSL) dosimeter on their bodies during X-ray diagnostic imaging. For evaluation of the detection limit based on an analysis of X-ray spectra, we propose a new quantitative identification method. We performed experiments for which we used diagnostic X-ray equipment, a soft-tissue-equivalent phantom (1-20 cm), and a CdTe X-ray spectrometer assuming one pixel of the X-ray imaging detector. Then, with the following two experimental settings, corresponding X-ray spectra were measured with 40-120 kVp and 0.5-1000 mAs at a source-to-detector distance of 100 cm: (1) X-rays penetrating a soft-tissue-equivalent phantom with the OSL dosimeter attached directly on the phantom, and (2) X-rays penetrating only the soft-tissue-equivalent phantom. Next, the energy fluence and errors in the fluence were calculated from the spectra. When the energy fluence with errors concerning these two experimental conditions was estimated to be indistinctive, we defined the condition as the OSL dosimeter not being identified on the X-ray image. Based on our analysis, we determined the identification limit of the dosimeter. We then compared our results with those for the general irradiation conditions used in clinics. We found that the OSL dosimeter could not be identified under the irradiation conditions of abdominal and chest radiography, namely, one can apply the OSL dosimeter to measurement of the exposure dose in the irradiation field of X-rays without disturbing medical images.


Assuntos
Luminescência , Radiografia/instrumentação , Radiometria/instrumentação , Absorciometria de Fóton , Limite de Detecção , Imagens de Fantasmas
2.
Radiol Phys Technol ; 9(2): 193-201, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26994011

RESUMO

We propose a new practical method for the construction of an accurate secondary X-ray field using medical diagnostic X-ray equipment. For accurate measurement of the air kerma of an X-ray field, it is important to reduce and evaluate the contamination rate of scattered X-rays. To determine the rate quantitatively, we performed the following studies. First, we developed a shield box in which an ionization chamber could be set at an inner of the box to prevent detection of the X-rays scattered from the air. In addition, we made collimator plates which were placed near the X-ray source for estimation of the contamination rate by scattered X-rays from the movable diaphragm which is a component of the X-ray equipment. Then, we measured the exposure dose while changing the collimator plates, which had diameters of 25-90 mm(ϕ). The ideal value of the exposure dose was derived mathematically by extrapolation to 0 mm(ϕ). Tube voltages ranged from 40 to 130 kV. Under these irradiation conditions, we analyzed the contamination rate by the scattered X-rays. We found that the contamination rates were less than 1.7 and 2.3 %, caused by air and the movable diaphragm, respectively. The extrapolated value of the exposure dose has been determined to have an uncertainty of 0.7 %. The ionization chamber used in this study was calibrated with an accuracy of 5 %. Using this kind of ionization chamber, we can construct a secondary X-ray field with an uncertainty of 5 %.


Assuntos
Radiometria/instrumentação , Desenho de Equipamento , Humanos , Doses de Radiação , Raios X
3.
Radiol Phys Technol ; 9(1): 99-108, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26589210

RESUMO

For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region.


Assuntos
Luminescência , Dispositivos Ópticos , Radiometria/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Método de Monte Carlo , Raios X
4.
Radiol Phys Technol ; 8(2): 286-94, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25975450

RESUMO

For X-ray diagnosis, the proper management of the entrance skin dose (ESD) is important. Recently, a small-type optically stimulated luminescence dosimeter (nanoDot OSL dosimeter) was made commercially available by Landauer, and it is hoped that it will be used for ESD measurements in clinical settings. Our objectives in the present study were to propose a method for calibrating the ESD measured with the nanoDot OSL dosimeter and to evaluate its accuracy. The reference ESD is assumed to be based on an air kerma with consideration of a well-known back scatter factor. We examined the characteristics of the nanoDot OSL dosimeter using two experimental conditions: a free air irradiation to derive the air kerma, and a phantom experiment to determine the ESD. For evaluation of the ability to measure the ESD, a calibration curve for the nanoDot OSL dosimeter was determined in which the air kerma and/or the ESD measured with an ionization chamber were used as references. As a result, we found that the calibration curve for the air kerma was determined with an accuracy of 5 %. Furthermore, the calibration curve was applied to the ESD estimation. The accuracy of the ESD obtained was estimated to be 15 %. The origin of these uncertainties was examined based on published papers and Monte-Carlo simulation. Most of the uncertainties were caused by the systematic uncertainty of the reading system and the differences in efficiency corresponding to different X-ray energies.


Assuntos
Luminescência , Radiometria/instrumentação , Pele/diagnóstico por imagem , Calibragem , Humanos , Método de Monte Carlo , Radiografia , Reprodutibilidade dos Testes , Incerteza
5.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 70(10): 1135-42, 2014 Oct.
Artigo em Japonês | MEDLINE | ID: mdl-25327423

RESUMO

The optically stimulated luminescence (OSL) dosimeter is a useful detector for measuring absorbed doses of X-rays. A small-type OSL dosimeter, "nanoDot", has recently been developed by Landauer, Inc., who also manufacture "microStar" reading equipment. However, additional annealing equipment is needed if the nanoDot OSL dosimeter is used repeatedly. The aim of this study was to fabricate suitable annealing equipment using commonly available products. Our device positions four fluorescent light tubes in a close configuration. The heat from the fluorescent light tubes is dissipated using fans. Experiments using diagnostic X-ray equipment were carried out to evaluate the capability of our annealing equipment. The results indicated that our equipment can fully anneal the nanoDot OSL dosimeter with annealing times of approximately 20 hours.


Assuntos
Dosimetria Termoluminescente/instrumentação , Desenho de Equipamento , Doses de Radiação , Reprodutibilidade dos Testes , Dosimetria Termoluminescente/métodos
6.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 70(12): 1381-91, 2014 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-25672443

RESUMO

An X-ray spectrum measured with CdTe detector has to be corrected with response function, because the spectrum is composed of full energy peaks (FEP) and escape peaks (EP). Recently, various simulation codes were developed, and using them the response functions can be calculated easily. The aim of this study is to propose a new method for measuring the response function and to compare it with the calculated value by the Monte Carlo simulation code. In this study, characteristic X-rays were used for measuring the response function. These X-rays were produced by the irradiation of diagnostic X-rays with metallic atoms. In the measured spectrum, there was a background contamination, which was caused by the Compton scattering of the irradiated X-ray in the sample material. Therefore, we thought of a new experimental methodology to reduce this background. The experimentally derived spectrum was analyzed and then the ratios of EP divided by FEP (EP/FEP) were calculated to compare the simulated values. In this article, we showed the property of the measured response functions and the analysis accuracy of the EP/FEP, and we indicated that the values calculated by Monte Carlo simulation code could be evaluated by using our method.


Assuntos
Compostos de Cádmio/química , Processamento de Imagem Assistida por Computador/instrumentação , Método de Monte Carlo , Radiografia/instrumentação , Radiografia/métodos , Análise Espectral/instrumentação , Análise Espectral/métodos , Telúrio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...