Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
In Vivo ; 37(4): 1890-1893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37369507

RESUMO

BACKGROUND/AIM: Diabetic nephropathy (DN) is the leading cause of end-stage renal failure and its incidence continues to increase. To decrease this, a countermeasure from an early stage is required. This is a DN stage 2 observation study that analyzed the results of a concurrent dietary survey in the Tsugaru study and discussed the relationship between dietary intake of n-3 fatty acid and DN. PATIENTS AND METHODS: Patients with stage 2 DN and aged 20 years or older in the Tsugaru region of Aomori Prefecture were enrolled. We examined the association between urinary albumin excretion (UAE) at enrollment and 36 months later and n-3PUFA intake obtained from a dietary survey. RESULTS: Of the 317 subjects at enrollment, 234 were followed for 36 months, of whom 123 were able to complete the dietary survey. After 36 months of follow-up of these 123 subjects, 28 were in remission and 18 had progressed. Correlations between UAE at 36 months and each of the parameters were examined and UAE at enrollment showed a positive correlation (r=0.4224, p<0.001); correlations between eicosapentaenoic acid (EPA)/arachidonic acid (AA), EPA+docosahexaenoic acid/AA, and n-6/n-3 and UAE at 36 months were weak. As shown by multiple regression analysis, the factor influencing UAE after 36 months was UAE at enrollment. CONCLUSION: Concerning the relationship between fatty acid intake balance and UAE, the previously reported renoprotective effect of n-3 fatty acids could not be demonstrated.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ácidos Graxos Ômega-3 , Humanos , Nefropatias Diabéticas/epidemiologia , Nefropatias Diabéticas/etiologia , Ácidos Graxos Insaturados , Ácido Eicosapentaenoico , Ingestão de Alimentos , Ácido Araquidônico , Estudos de Coortes
3.
Curr Genet ; 65(5): 1089-1098, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30997531

RESUMO

The centromere region of chromosomes consists of repetitive DNA sequences, and is, therefore, one of the fragile sites of chromosomes in many eukaryotes. In the core region, the histone H3 variant CENP-A forms centromere-specific nucleosomes that are required for kinetochore formation. In the pericentromeric region, histone H3 is methylated at lysine 9 (H3K9) and heterochromatin is formed. The transcription of pericentromeric repeats by RNA polymerase II is strictly repressed by heterochromatin. However, the role of the transcriptional silencing of the pericentromeric repeats remains largely unclear. Here, we focus on the chromosomal rearrangements that occur at the repetitive centromeres, and highlight our recent studies showing that transcriptional silencing by heterochromatin suppresses gross chromosomal rearrangements (GCRs) at centromeres in fission yeast. Inactivation of the Clr4 methyltransferase, which is essential for the H3K9 methylation, increased GCRs with breakpoints located in centromeric repeats. However, mutations in RNA polymerase II or the transcription factor Tfs1/TFIIS, which promotes restart of RNA polymerase II following its backtracking, reduced the GCRs that occur in the absence of Clr4, demonstrating that heterochromatin suppresses GCRs by repressing the Tfs1-dependent transcription. We also discuss how the transcriptional restart gives rise to chromosomal rearrangements at centromeres.


Assuntos
Centrômero/genética , Cromossomos , Inativação Gênica , Heterocromatina/genética , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica , Instabilidade Cromossômica , Schizosaccharomyces/genética , Ativação Transcricional , Translocação Genética
4.
Commun Biol ; 2: 17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30652128

RESUMO

Heterochromatin, characterized by histone H3 lysine 9 (H3K9) methylation, assembles on repetitive regions including centromeres. Although centromeric heterochromatin is important for correct segregation of chromosomes, its exact role in maintaining centromere integrity remains elusive. Here, we found in fission yeast that heterochromatin suppresses gross chromosomal rearrangements (GCRs) at centromeres. Mutations in Clr4/Suv39 methyltransferase increased the formation of isochromosomes, whose breakpoints were located in centromere repeats. H3K9A and H3K9R mutations also increased GCRs, suggesting that Clr4 suppresses centromeric GCRs via H3K9 methylation. HP1 homologs Swi6 and Chp2 and the RNAi component Chp1 were the chromodomain proteins essential for full suppression of GCRs. Remarkably, mutations in RNA polymerase II (RNAPII) or Tfs1/TFIIS, the transcription factor that facilitates restart of RNAPII after backtracking, specifically bypassed the requirement of Clr4 for suppressing GCRs. These results demonstrate that heterochromatin suppresses GCRs by repressing Tfs1-dependent transcription of centromere repeats.


Assuntos
Centrômero/metabolismo , Heterocromatina/metabolismo , Isocromossomos/genética , Schizosaccharomyces/genética , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Metilação , Plasmídeos/genética , Interferência de RNA , RNA Polimerase II/genética , Proteínas Repressoras/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
6.
Nucleic Acids Res ; 45(19): 11222-11235, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28977643

RESUMO

Centromeres that are essential for faithful segregation of chromosomes consist of unique DNA repeats in many eukaryotes. Although recombination is under-represented around centromeres during meiosis, little is known about recombination between centromere repeats in mitotic cells. Here, we compared spontaneous recombination that occurs between ade6B/ade6X inverted repeats integrated at centromere 1 (cen1) or at a non-centromeric ura4 locus in fission yeast. Remarkably, distinct mechanisms of homologous recombination (HR) were observed in centromere and non-centromere regions. Rad51-dependent HR that requires Rad51, Rad54 and Rad52 was predominant in the centromere, whereas Rad51-independent HR that requires Rad52 also occurred in the arm region. Crossovers between inverted repeats (i.e. inversions) were under-represented in the centromere as compared to the arm region. While heterochromatin was dispensable, Mhf1/CENP-S, Mhf2/CENP-X histone-fold proteins and Fml1/FANCM helicase were required to suppress crossovers. Furthermore, Mhf1 and Fml1 were found to prevent gross chromosomal rearrangements mediated by centromere repeats. These data for the first time uncovered the regulation of mitotic recombination between DNA repeats in centromeres and its physiological role in maintaining genome integrity.


Assuntos
Centrômero/genética , DNA Fúngico/genética , Recombinação Homóloga , Mitose/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/metabolismo , Genoma Fúngico/genética , Modelos Genéticos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
7.
Nucleic Acids Res ; 44(22): 10744-10757, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27697832

RESUMO

Centromeres consist of DNA repeats in many eukaryotes. Non-allelic homologous recombination (HR) between them can result in gross chromosomal rearrangements (GCRs). In fission yeast, Rad51 suppresses isochromosome formation that occurs between inverted repeats in the centromere. However, how the HR enzyme prevents homology-mediated GCRs remains unclear. Here, we provide evidence that Rad51 with the aid of the Swi/Snf-type motor protein Rad54 promotes non-crossover recombination between centromere repeats to prevent isochromosome formation. Mutations in Rad51 and Rad54 epistatically increased the rates of isochromosome formation and chromosome loss. In sharp contrast, these mutations decreased gene conversion between inverted repeats in the centromere. Remarkably, analysis of recombinant DNAs revealed that rad51 and rad54 increase the proportion of crossovers. In the absence of Rad51, deletion of the structure-specific endonuclease Mus81 decreased both crossovers and isochromosomes, while the cdc27/pol32-D1 mutation, which impairs break-induced replication, did not. We propose that Rad51 and Rad54 promote non-crossover recombination between centromere repeats on the same chromatid, thereby suppressing crossover between non-allelic repeats on sister chromatids that leads to chromosomal rearrangements. Furthermore, we found that Rad51 and Rad54 are required for gene silencing in centromeres, suggesting that HR also plays a role in the structure and function of centromeres.


Assuntos
DNA Helicases/fisiologia , Rad51 Recombinase/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Centrômero , Cromátides , Cromossomos Fúngicos , Troca Genética , DNA Fúngico/genética , Reparo de DNA por Recombinação , Sequências Repetitivas de Ácido Nucleico , Schizosaccharomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...