Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(32): 17872-17880, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37466125

RESUMO

Previously, nonenzymatic primer extension reaction of acyclic l-threoninol nucleic acid (L-aTNA) was achieved in the presence of N-cyanoimidazole (CNIm) and Mn2+; however, the reaction conditions were not optimized and a mechanistic insight was not sufficient. Herein, we report investigation of the kinetics and reaction mechanism of the chemical ligation of L-aTNA to L-aTNA and of DNA to DNA. We found that Cd2+, Ni2+, and Co2+ accelerated ligation of both L-aTNA and DNA and that the rate-determining step was activation of the phosphate group. The activation was enhanced by duplex formation between a phosphorylated L-aTNA fragment and template, resulting in unexpectedly more effective L-aTNA ligation than DNA ligation. Under optimized conditions, an 8-mer L-aTNA primer could be elongated by ligation to L-aTNA trimers to produce a 29-mer full-length oligomer with 60% yield within 2 h at 4 °C. This highly effective chemical ligation system will allow construction of artificial genomes, robust DNA nanostructures, and xeno nucleic acids for use in selection methods. Our findings also shed light on the possible pre-RNA world.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/química , DNA/química , Amino Álcoois/química , RNA/química , Conformação de Ácido Nucleico
2.
Nat Commun ; 12(1): 804, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547322

RESUMO

Evolution of xeno nucleic acid (XNA) world essentially requires template-directed synthesis of XNA polymers. In this study, we demonstrate template-directed synthesis of an acyclic XNA, acyclic L-threoninol nucleic acid (L-aTNA), via chemical ligation mediated by N-cyanoimidazole. The ligation of an L-aTNA fragment on an L-aTNA template is significantly faster and occurs in considerably higher yield than DNA ligation. Both L-aTNA ligation on a DNA template and DNA ligation on an L-aTNA template are also observed. High efficiency ligation of trimer L-aTNA fragments to a template-bound primer is achieved. Furthermore, a pseudo primer extension reaction is demonstrated using a pool of random L-aTNA trimers as substrates. To the best of our knowledge, this is the first example of polymerase-like primer extension of XNA with all four nucleobases, generating phosphodiester bonding without any special modification. This technique paves the way for a genetic system of the L-aTNA world.


Assuntos
Amino Álcoois/metabolismo , Butileno Glicóis/metabolismo , DNA/genética , Imidazóis/química , Ácidos Nucleicos/síntese química , RNA/genética , Amino Álcoois/química , Pareamento de Bases , Biocatálise , Butileno Glicóis/química , Cátions Bivalentes , DNA/química , DNA/metabolismo , Primers do DNA/química , Primers do DNA/metabolismo , Manganês/química , Manganês/metabolismo , Conformação de Ácido Nucleico , RNA/química , RNA/metabolismo , Soluções
3.
RSC Adv ; 10(49): 29373-29377, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521116

RESUMO

Stereoselective and efficient synthesis of Gly-Gly-type (E)-methylalkene and (Z)-chloroalkene dipeptide isosteres is realized by organocuprate-mediated single electron transfer reduction. The synthetic isosteres can be used in Fmoc-based solid phase peptide synthesis, resulting in the preparation of the 14-mer RGG peptidomimetics containing an (E)-methylalkene or a (Z)-chloroalkene unit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA