Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Gastrointest Pathophysiol ; 9(2): 37-46, 2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30283709

RESUMO

Acute pancreatitis (AP) is an inflammatory disorder of pancreatic tissue initiated in injured acinar cells. Severe AP remains a significant challenge due to the lack of effective treatment. The widely-accepted autodigestion theory of AP is now facing challenges, since inhibiting protease activation has negligible effectiveness for AP treatment despite numerous efforts. Furthermore, accumulating evidence supports a new concept that malfunction of a self-protective mechanism, the unfolded protein response (UPR), is the driving force behind the pathogenesis of AP. The UPR is induced by endoplasmic reticulum (ER) stress, a disturbance frequently found in acinar cells, to prevent the aggravation of ER stress that can otherwise lead to cell injury. In addition, the UPR's signaling pathways control NFκB activation and autophagy flux, and these dysregulations cause acinar cell inflammatory injury in AP, but with poorly understood mechanisms. We therefore summarize the protective role of the UPR in AP, propose mechanistic models of how inadequate UPR could promote NFκB's pro-inflammatory activity and impair autophagy's protective function in acinar cells, and discuss its relevance to current AP treatment. We hope that insight provided in this review will help facilitate the research and management of AP.

2.
Cereb Cortex ; 24(2): 315-27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23081885

RESUMO

Tuberous sclerosis complex (TSC) is characterized by developmental malformations of the cerebral cortex known as tubers, comprised of cells that exhibit enhanced mammalian target of rapamycin (mTOR) signaling. To date, there are no reports of mTORC1 and mTORC2 activation in fetal tubers or in neural progenitor cells lacking Tsc2. We demonstrate mTORC1 activation by immunohistochemical detection of substrates phospho-p70S6K1 (T389) and phospho-S6 (S235/236), and mTORC2 activation by substrates phospho-PKCα (S657), phospho-Akt (Ser473), and phospho-SGK1 (S422) in fetal tubers. Then, we show that Tsc2 shRNA knockdown (KD) in mouse neural progenitor cells (mNPCs) in vitro results in enhanced mTORC1 (phospho-S6, phospho-4E-BP1) and mTORC2 (phospho-Akt and phospho-NDRG1) signaling, as well as a doubling of cell size that is rescued by rapamycin, an mTORC1 inhibitor. Tsc2 KD in vivo in the fetal mouse brain by in utero electroporation causes disorganized cortical lamination and increased cell volume that is prevented with rapamycin. We demonstrate for the first time that mTORC1 and mTORC2 signaling is activated in fetal tubers and in mNPCs following Tsc2 KD. These results suggest that inhibition of mTOR pathway signaling during embryogenesis could prevent abnormal brain development in TSC.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adulto , Animais , Encéfalo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/antagonistas & inibidores , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/fisiologia , Células-Tronco Neurais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
3.
Sci Transl Med ; 5(182): 182ra53, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616120

RESUMO

A rare neurodevelopmental disorder in the Old Order Mennonite population called PMSE (polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome; also called Pretzel syndrome) is characterized by infantile-onset epilepsy, neurocognitive delay, craniofacial dysmorphism, and histopathological evidence of heterotopic neurons in subcortical white matter and subependymal regions. PMSE is caused by a homozygous deletion of exons 9 to 13 of the LYK5/STRADA gene, which encodes the pseudokinase STRADA, an upstream inhibitor of mammalian target of rapamycin complex 1 (mTORC1). We show that disrupted pathfinding in migrating mouse neural progenitor cells in vitro caused by STRADA depletion is prevented by mTORC1 inhibition with rapamycin or inhibition of its downstream effector p70 S6 kinase (p70S6K) with the drug PF-4708671 (p70S6Ki). We demonstrate that rapamycin can rescue aberrant cortical lamination and heterotopia associated with STRADA depletion in the mouse cerebral cortex. Constitutive mTORC1 signaling and a migration defect observed in fibroblasts from patients with PMSE were also prevented by mTORC1 inhibition. On the basis of these preclinical findings, we treated five PMSE patients with sirolimus (rapamycin) without complication and observed a reduction in seizure frequency and an improvement in receptive language. Our findings demonstrate a mechanistic link between STRADA loss and mTORC1 hyperactivity in PMSE, and suggest that mTORC1 inhibition may be a potential treatment for PMSE as well as other mTOR-associated neurodevelopmental disorders.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/metabolismo , Convulsões/tratamento farmacológico , Sirolimo/uso terapêutico , Animais , Western Blotting , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Citarabina/farmacologia , Feminino , Humanos , Imidazóis/farmacologia , Imuno-Histoquímica , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Piperazinas/farmacologia , Gravidez , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...