Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(1): 494-508, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222577

RESUMO

Recently, we developed a systems engineering model of the human cardiorespiratory system [Kurian et al. ACS Omega2023, 8 (23), 20524-20535. DOI: 10.1021/acsomega.3c00854] based on existing models of physiological processes and adapted it for chronic obstructive pulmonary disease (COPD)-an inflammatory lung disease with multiple manifestations and one of the leading causes of death in the world. This control engineering-based model is extended here to allow for variable metabolic rates established at different levels of physical activity. This required several changes to the original model: the model of the controller was enhanced to include the feedforward loop that is responsible for cardiorespiratory control under varying metabolic rates (activity level, characterized as metabolic equivalent of the task-Rm-and normalized to one at rest). In addition, a few refinements were made to the cardiorespiratory mechanics, primarily to introduce physiological processes that were not modeled earlier but became important at high metabolic rates. The extended model is verified by analyzing the impact of exercise (Rm > 1) on the cardiorespiratory system of healthy individuals. We further formally justify our previously proposed adaptation of the model for COPD patients through sensitivity analysis and refine the parameter tuning through the use of a parallel tempering stochastic global optimization method. The extended model successfully replicates experimentally observed abnormalities in COPD-the drop in arterial oxygen tension and dynamic hyperinflation under high metabolic rates-without being explicitly trained on any related data. It also supports the prospects of remote patient monitoring in COPD.

2.
ACS Omega ; 8(23): 20524-20535, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332794

RESUMO

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by airflow limitation. This study develops a systems engineering framework for representing important mechanistic details of COPD in a model of the cardiorespiratory system. In this model, we present the cardiorespiratory system as an integrated biological control system responsible for regulating breathing. Four engineering control system components are considered: sensor, controller, actuator, and the process itself. Knowledge of human anatomy and physiology is used to develop appropriate mechanistic mathematical models for each component. Following a systematic analysis of the computational model, we identify three physiological parameters associated with reproducing clinical manifestations of COPD: changes in the forced expiratory volume, lung volumes, and pulmonary hypertension. We quantify the changes in these parameters (airway resistance, lung elastance, and pulmonary resistance) as the ones that result in a systemic response that is diagnostic of COPD. A multivariate analysis of the simulation results reveals that the changes in airway resistance have a broad impact on the human cardiorespiratory system and that the pulmonary circuit is stressed beyond normal under hypoxic environments in most COPD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...