Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065578

RESUMO

Copper nitride shows various properties that depend on the structure of the material and is influenced by the change in technical parameters. In the present work, Cu-N layers were synthesized using the pulsed magnetron sputtering method. The synthesis was performed under different operating conditions: direct current (DC) or alternating current (AC) power supply, and various atmospheres: pure Ar and a mixture of Ar + N2. The structural properties of the deposited layers were characterized by X-ray diffraction measurements, and Raman spectroscopy and scanning electron microscopy have been performed. Optical properties were also evaluated. The obtained layers showed tightly packed columnar grain features. The kinetics of the layer growth in the AC mode was lower than that observed in the DC mode, and the layers were thinner and more fine-grained. The copper nitride layers were characterized by the one-phase and two-phase polycrystalline structure of the Cu3N phase with the preferred growth orientation (100). The lattice constant oscillates between 3.808 and 3.815 Å for one-phase and has a value of 3.828 Å for a two-phase structure. Phase composition results were correlated with Raman spectroscopy measurements. Raman spectra exhibited a broad, diffused, and intense signal of Cu3N phase, with Raman shift located at 628-635 cm-1. Studies on optical properties showed that the energy gap ranged from 2.17 to 2.47 eV. The results showed that controlling technical parameters gives a possibility to optimize the structure and phase composition of deposited layers. The reported changes were discussed and attributed to the properties of the material layers and technology method.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 194: 136-140, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29331814

RESUMO

This paper presents the results of investigations of carbon films deposited by a modified version of the magnetron sputtering method - HiPGIMS (High Power Gas Injection Magnetron Sputtering). In this experiment, the magnetron system with inversely polarized electrodes (sputtered cathode at ground potential and positively biased, spatially separated anode) was used. This arrangement allowed us to conduct the experiment using voltages ranging from 1 to 2kV and a power supply system equipped with 25/50µF capacitor battery. Carbon films were investigated by VIS/UV Raman spectroscopy. Sp3/sp2 bonding ratio was evaluated basing the elementary components of registered spectra. Our investigation showed that sp3 bond content increases with discharge power but up to specific value only. In extreme conditions of generating plasma impulses, we detected a reversed relation of the sp3/sp2 ratio. In our opinion, a energy of plasma pulse favors nucleation of a sp3 phase because of a relatively higher ionization state but in extreme cases the influence of energy is reversed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...