Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493502

RESUMO

We describe the results of our investigations of the generation of a ribbon electron beam (10 × 220 mm2) by a two-stage discharge system based on a hollow-cathode glow discharge plasma. The source design enables operation in the pressure range 2 × 10-2 to 10 Pa. At a beam accelerating voltage of 8 kV, the beam current is 450 mA at a pressure of 2 × 10-2 Pa and 150 mA at a pressure of 10 Pa. To achieve a uniform current density distribution of the beam over its cross-sectional area, a special design of emission electrode was employed. This enabled us to reduce non-uniformities of the beam current density distribution to a level of 10%.

2.
Rev Sci Instrum ; 93(4): 043304, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489919

RESUMO

In an ion source based on a pulsed planar magnetron sputtering discharge with gas (argon) feed, the fraction of metal ions in the ion beam decreases with decreasing gas pressure, down to the minimum possible working pressure of the magnetron sputtering discharge. The use of a supplementary vacuum arc plasma injector provides stable operation of the pulsed magnetron sputtering discharge at extremely low pressure and without gas feed. Under these conditions, the pressure dependence of the gaseous ion fraction displays a maximum (is nonmonotonic).

3.
Rev Sci Instrum ; 91(9): 093304, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33003797

RESUMO

We describe the design, parameters, and characteristics of a modified wide-aperture, plasma-cathode electron beam source operating in the pressure range of 3 Pa-30 Pa and generating large-radius, low-energy (up to 10 keV) electron beams with a pulse width varying from 0.05 ms to 20 ms and a beam current up to several tens of amperes. A pulsed cathodic arc is used to generate the emission plasma, and a DC accelerating voltage is used to form the electron beam. Modernization of the design and optimization of the operating conditions of the electron source have provided a multiple increase in the pulse duration of the electron beam current and the corresponding increase in the beam energy per pulse, as compared to previously developed pulsed forevacuum electron sources.

4.
Rev Sci Instrum ; 91(4): 043505, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357761

RESUMO

We describe a plasma-cathode electron beam source based on a hollow cathode glow discharge and operating in the forevacuum pressure range that produces a steady-state ribbon beam. The electron beam is generated in the pressure range of 10-30 Pa. A multi-aperture electron extraction and beam formation system is used to provide beam stability and enhanced uniformity of beam current density, allowing the use of this kind of device for beam-plasma surface modification over relatively large areas.

5.
Rev Sci Instrum ; 91(3): 033303, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259940

RESUMO

We describe a plasma-cathode electron beam source based on a hollow-cathode discharge that is capable of generating a 9 kW dc electron beam at an accelerating voltage of 20 kV, with helium as a working gas at a pressure of 30 Pa. A test run of ∼50 operational hours did not indicate any significant degradation of the electron source extraction system or other structural components, and we estimate the operational lifetime of the source at about 100-120 h.

6.
Rev Sci Instrum ; 91(2): 023302, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113376

RESUMO

Supersonic plasma flows with densities of 1013-1016 cm-3 find application in various fields of physics and technology such as surface modification, simulation of plasma impact in fusion facilities, and laboratory studies of space phenomena. The work outlined here describes a pulsed vacuum arc source of supersonic dense metal plasma flow. The design, working principle, features of the power supply circuit, and main parameters of the plasma source in relation to the parameter of the vacuum arc pulse are discussed. Flows of ionized aluminum, copper, tantalum, and molybdenum were investigated. At a vacuum arc current amplitude of 25 kA, the source generated a plasma with a density of 3 × 1015 cm-3. The ion velocity in the plasma flow and the ion charge state composition were measured. For an aluminum cathode, we have carried out measurements of the macroparticle fraction and the erosion rate. This supersonic metal ion plasma flow source is primarily designed for studying the flow interaction with an inhomogeneous magnetic field, with simultaneous application of electron cyclotron resonance irradiation from high-power pulsed gyrotrons, but may also find other applications.

7.
Rev Sci Instrum ; 90(2): 023302, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30831679

RESUMO

We present the results of our investigations of magnetic focusing of the electron beam generated by a plasma-cathode electron source in the forevacuum pressure range (10-30 Pa). We show that a magnetic double-focusing system employing two separate field coils with the main magnetic coil located close to the beam collector at the focal plane provides effective and efficient focusing of the electron beam. With our e-beam source, this focusing system produces a power density of more than 1 MW/cm2 at the electron beam focus with an accelerating voltage of 30 kV and a beam current up to 60 mA. For comparison, the maximum beam power density provided by plasma-cathode electron sources at pressures of less than 0.1 Pa is at the level of 10 MW/cm2.

8.
Opt Express ; 25(3): 1958-1972, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519045

RESUMO

By analyzing profiles of experimental x-ray spectral lines of Si XIV and Al XIII, we found that both Langmuir and ion acoustic waves developed in plasmas produced via irradiation of thin Si foils by relativistic laser pulses (intensities ~1021 W/cm2). We prove that these waves are due to the parametric decay instability (PDI). This is the first time that the PDI-induced ion acoustic turbulence was discovered by the x-ray spectroscopy in laser-produced plasmas. These conclusions are also supported by PIC simulations. Our results can be used for laboratory modeling of physical processes in astrophysical objects and a better understanding of intense laser-plasma interactions.

9.
Rev Sci Instrum ; 87(6): 063302, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370442

RESUMO

We describe an experiment on the use of a fore-vacuum-pressure, plasma-cathode, electron beam source with current up to 100 mA and beam energy up to 15 keV for deposition of Mg and Al oxide films on Si substrates in an oxygen atmosphere at a pressure of 10 Pa. The metals (Al and Mg) were evaporated and ionized using the electron beam with the formation of a gas-metal beam-plasma. The plasma was deposited on the surface of Si substrates. The elemental composition of the deposited films was analyzed.

10.
Rev Sci Instrum ; 87(2): 02A902, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931963

RESUMO

Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.

11.
Rev Sci Instrum ; 87(2): 02A904, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931965

RESUMO

The paper reports on a study of the mass-charge state of the plasma produced in a vacuum arc discharge with composite cathodes which were copper-disk coated with a hydrogenated Zr film of thicknesses 9, 22, and 35 µm. The cathodes allow the generation of multicomponent gas and metal ion beams with a hydrogen ion content from several to several tens of percent. Also investigated is the dependence of the H ion fraction in a beam on the Zr film thickness during erosion to the point of disappearance of Zr peaks in mass-charge spectra. The ability of the vacuum arc system to produce H ions is analyzed by analyzing the cathode lifetime as a function of the film thickness and pulse repetition frequency.

12.
Rev Sci Instrum ; 87(2): 02A905, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931966

RESUMO

High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 µs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

13.
Rev Sci Instrum ; 87(2): 02B702, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26932065

RESUMO

Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described.

14.
Rev Sci Instrum ; 87(2): 02B703, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26932066

RESUMO

An ion source based on a hollow-cathode Penning discharge was switched to a high-current pulsed mode (tens of amperes and tens of microseconds) to produce an intense hydrogen ion beam. With molecular hydrogen (H2), the ion beam contained three species: H(+), H2(+), and H3(+). For all experimental conditions, the fraction of H2 (+) ions in the beam was about 10 ÷ 15% of the total ion beam current and varied little with ion source parameters. At the same time, the ratio of H(+) and H3(+) depended strongly on the discharge current, particularly on its distribution in the gap between the hollow and planar cathodes. Increasing the discharge current increased the H(+) fraction in ion beam. The maximum fraction of H(+) reached 80% of the total ion beam current. Forced redistribution of the discharge current in the cathode gap for increasing the hollow cathode current could greatly increase the H3(+) fraction in the beam. At optimum parameters, the fraction of H3(+) ions reached 60% of the total ion beam current.

15.
Rev Sci Instrum ; 86(12): 123301, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26724016

RESUMO

The industrial quadrupole RGA-100 residual gas analyzer was modified for the research of electron beam-generated plasma at forevacuum pressure range. The standard ionizer of the RGA-100 was replaced by three electrode extracting unit. We made the optimization of operation parameters in order to provide the maximum values of measured currents of any ion species. The modified analyzer was successfully tested with beam plasma of argon, nitrogen, oxygen, and hydrocarbons.

16.
Rev Sci Instrum ; 85(8): 083306, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25173261

RESUMO

The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5-20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.

17.
Rev Sci Instrum ; 85(2): 02A501, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593424

RESUMO

Bernas ion source development to meet needs of 100s of electron-volt ion implanters for shallow junction production is in progress in Institute for Theoretical and Experimental Physics. The ion sources provides high intensity ion beam of boron clusters under self-cleaning operation mode. The last progress with ion source operation is presented. The mechanism of self-cleaning procedure is described.

18.
Rev Sci Instrum ; 85(2): 02A738, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593472

RESUMO

The paper describes the principle of operation, design special features, and parameters of an inverted time-of-flight spectrometer. The spectrometer is designed in such way that its deflecting plates, drift tube, and primary measuring system are at high potential with respect to the ground potential, whereas plasma is formed near grounded electrodes. This type of configuration greatly extends the application range of the device, making it possible to measure the mass-to-charge composition of plasma with wide range of parameters.

19.
Rev Sci Instrum ; 85(2): 02B501, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593598

RESUMO

The Metal Vapor Vacuum Arc (MEVVA) ion sources are capable of generating ion beams of almost all metals of the periodic table. For this kind of ion source, a combination of gas feeding with magnetic field allows the simultaneous generation of both metal and gaseous ions. That makes the MEVVA ion source an excellent instrument for science and application. This work presents results of investigation for ion angular distributions in vacuum arc plasma of Mevva-V.Ru ion source for composite cathodes and for elevated gas pressure. It was shown that for all the cathode materials, singly charged ions have wider angular distribution than multiply charged ions. Increasing the working gas pressure leads to a significant change in the angular distribution of gaseous ions, while with the distribution of metal ions gas remains practically unchanged. The reasons for such different influences are discussed.

20.
Rev Sci Instrum ; 85(2): 02B502, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593599

RESUMO

We describe an approach to ion implantation in which the plasma and its electronics are held at ground potential and the ion beam is injected into a space held at high negative potential, allowing considerable savings both economically and technologically. We used an "inverted ion implanter" of this kind to carry out implantation of gold into alumina, with Au ion energy 40 keV and dose (3-9) × 10(16) cm(-2). Resistivity was measured in situ as a function of dose and compared with predictions of a model based on percolation theory, in which electron transport in the composite is explained by conduction through a random resistor network formed by Au nanoparticles. Excellent agreement is found between the experimental results and the theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...