Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 44(16): 6144-52, 2005 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-15835902

RESUMO

pHtrII, a pharaonis halobacterial transducer protein, possesses two transmembrane helices and forms a signaling complex with pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, NpSRII) within the halobacterial membrane. This complex transmits a light signal to the sensory system located in the cytoplasm. It has been suggested that the linker region connecting the transmembrane region and the methylation region of pHtrII is important for binding to ppR and subsequent photosignal transduction. In this study, we present evidence to suggest that the linker region itself interacts directly with ppR in addition to the interaction in the membrane region. An in vitro pull-down assay revealed that the linker region bound to ppR, and its dissociation constant (K(D)) was estimated to be approximately 10 microM using isothermal titration calorimetry (ITC). Solution NMR analyses showed that ppR interacted with the linker region of pHtrII (pHtrII(G83)(-)(Q149)) and resulted in the broadening of many peaks, indicating structural changes within this region. These results suggest that the pHtrII linker region interacts directly with ppR. There was no demonstrable interaction between the C-terminal region of ppR (ppR(Gly224)(-)(His247)) and either the linker region (pHtrII(G83)(-)(Q149)) or the transmembrane region (pHtrII(M1)(-)(E114)) of pHtrII. On the basis of the NMR, CD, and photochemical data, we discuss the structural changes and role of the linker region of pHtrII in relation to photosignal transduction.


Assuntos
Proteínas Arqueais/química , Halorrodopsinas/química , Natronobacterium/química , Rodopsinas Sensoriais/química , Proteínas Arqueais/genética , Sequência de Bases , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , DNA Arqueal/genética , Halorrodopsinas/genética , Modelos Moleculares , Natronobacterium/genética , Ressonância Magnética Nuclear Biomolecular , Fotoquímica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Rodopsinas Sensoriais/genética , Transdução de Sinais
2.
Solid State Nucl Magn Reson ; 25(1-3): 5-14, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14698378

RESUMO

We demonstrate here a general feature of dynamic aspect of membrane proteins as revealed by site-directed 13C NMR studies on bacteriorhodopsin (bR) as a typical membrane protein and a variety of mutants at ambient temperature. 13C NMR signals of [3-13C]Ala- or [1-13C]Val-labeled proteins were assigned regio-specifically with reference to the data of the conformation-dependent 13C chemical shifts from model polypeptides, followed by site-specific assignment based on site-directed mutants. Revealed picture of membrane protein at ambient temperature is not static in contrast to anticipation from crystalline structures but flexible enough to undergo a variety of local fluctuations with frequencies from 10(2) to 10(8)Hz, as pointed out already. This picture was further refined by taking into account of residue-specific dynamics of interfacial domains between the surface and inner part of the transmembrane helices and conformational fluctuation induced by the presence of a kinked structure. The residue-specific dynamics of the former was revealed by observation of broadened or suppressed peaks from the interfacial domains caused by acquisition of internal fluctuation motions interfered with frequencies of proton decoupling or magic angle spinning. The presence of such suppressed peaks due to molecular fluctuations in the interfacial domains was further confirmed by insensitivity of the peak-intensities from the interfacial domains in spite of the presence of accelerated relaxation rate to nearby residues from surface bound Mn2+ ion. Further, conformational change of the transmembrane alpha-helix F due to a plausible kinked structure at Pro 186 was confirmed in view of specific displacements of Ala 184 and Val 187 13C NMR peaks from chemically synthesized [3-13C]Ala(184)-, [1-13C]Val(187)-labeled wild type and P186L mutant of transmembrane fragment F(164-194) incorporated into lipid bilayer. It is emphasized that the observed displacement of [3-13C]-labeled Ala 184 peak at 17.4 ppm in the presence of kinked structure in this model peptide is consistent with that of intact protein at 17.27 ppm.


Assuntos
Aminoácidos/química , Bacteriorodopsinas/química , Isótopos de Carbono , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Fluidez de Membrana , Proteínas de Membrana/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...