Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(16): 12397-12405, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38619910

RESUMO

Trimethylamine N-oxide (TMAO) as a representative natural osmolyte has received much attention because of its unique properties, including enhancement of hydrogen bonding networks in liquid water and stabilization of three-dimensional structures of proteins in living organisms. As a hydrogen bond maker and/or a protein stabilizer, its hydrated structures and orientation dynamics in aqueous solutions have been investigated by various spectroscopic methods. Particularly, distinct from other natural osmolytes, it has been found that TMAO molecules form complexes with water molecules even at low concentrations, showing extraordinarily long lifetimes and much larger effective dipole moments. In this study, we demonstrated that collective motions of water molecules are closely correlated to TMAO molecules, as revealed by the changes of the librational modes observed in hyper-Raman (HR) spectra in the low-frequency region (<1000 cm-1) for the first time. Based on HR spectra of the TMAO solutions at submolar concentrations, we observed that the librational bands originating from water apparently upshift (∼15 cm-1) upon the addition of TMAO molecules. Compared to the OH stretching band of water showing a negligible downshift (<5 cm-1), the librational bands of water are more sensitive to reflect changes in the hydrogen bonding networks in the TMAO solutions, suggesting formation of transient TMAO-water complexes plays an essential role toward surrounding water molecules in perturbing their librational motions. We expect to provide a supplementary approach to understand that water molecules in TMAO aqueous solutions are strongly affected by TMAO molecules, different from other osmolytes.

2.
Angew Chem Int Ed Engl ; 62(46): e202312610, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37750665

RESUMO

Structurally defined graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices. Low band gap (<1 eV) GNRs are particularly important when considering the Schottky barrier in device performance. Here, we demonstrate the first solution synthesis of 8-AGNRs through a carefully designed arylated polynaphthalene precursor. The efficiency of the oxidative cyclodehydrogenation of the tailor-made polymer precursor into 8-AGNRs was validated by FT-IR, Raman, and UV/Vis-near-infrared (NIR) absorption spectroscopy, and further supported by the synthesis of naphtho[1,2,3,4-ghi]perylene derivatives (1 and 2) as subunits of 8-AGNR, with a width of 0.86 nm as suggested by the X-ray single crystal analysis. Low-temperature scanning tunneling microscopy (STM) and solid-state NMR analyses provided further structural support for 8-AGNR. The resulting 8-AGNR exhibited a remarkable NIR absorption extending up to ∼2400 nm, corresponding to an optical band gap as low as ∼0.52 eV. Moreover, optical-pump TeraHertz-probe spectroscopy revealed charge-carrier mobility in the dc limit of ∼270 cm2  V-1 s-1 for the 8-AGNR.

3.
J Phys Chem B ; 127(30): 6675-6683, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37468171

RESUMO

Characterization of the secondary structures of two model polypeptides, poly-l-lysine and poly-l-glutamic acid in aqueous solutions has been demonstrated by hyper-Raman (HR) spectroscopy for the first time. Complementary to infrared (IR) and visible Raman spectroscopy, HR spectroscopy gives the amide I, II, and III bands originating from the polypeptide backbones and the CCH3 symmetric bending mode, enabling us to distinguish different conformations. The α-helix gives the broad and weak amide III band, while the ß-sheet and the random coil show similar spectral patterns with different relative intensities between the amide I and II bands. HR spectra from aqueous solutions of the α-helix and the random coil of poly-l-ornithine also possess these spectral features. The HR spectra are analogous to UV resonance Raman (UVRR) spectra, indicating the signal enhancement due to the electronic resonance effect via the π-π* transition. In contrast, the vibrational frequencies of the amide I band in the HR spectra are much higher than those in the IR, visible Raman, and UVRR spectra, suggesting the non-coincidence between HR, IR, and Raman bands. Our finding suggests that HR spectroscopy is promising to provide complementary information on the secondary structures of polypeptides in aqueous solutions as a spectral approach differing from existing vibrational spectroscopic methods.

4.
J Phys Chem Lett ; 14(12): 3063-3068, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36947156

RESUMO

The impact of the vibrational coupling of the OH stretch mode on the spectra differs significantly between IR and Raman spectra of water. Unified understanding of the vibrational couplings is not yet achieved. By using a different class of vibrational spectroscopy, hyper-Raman (HR) spectroscopy, together with machine-learning-assisted HR spectra calculation, we examine the impact of the vibrational couplings of water through the comparison of isotopically diluted H2O and pure H2O. We found that the isotopic dilution reduces the HR bandwidths, but the impact of the vibrational coupling is smaller than in the IR and parallel-polarized Raman. Machine learning HR spectra indicate that the intermolecular coupling plays a major role in broadening the bandwidth, while the intramolecular coupling is negligibly small, which is consistent with the IR and Raman spectra. Our result clearly demonstrates a limited impact of the intramolecular vibration, independent of the selection rules of vibrational spectroscopies.

5.
J Chem Phys ; 157(5): 054505, 2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35933221

RESUMO

Hyper-Raman (HR) spectra of benzene-h6, benzene-d6, and pyridine in the liquid phase excited at 1064 nm were measured by a picosecond laser with a high repetition rate. Although benzene and pyridine are important aromatic molecules, the qualities of the HR spectra previously reported were not high enough to be compared with those of IR and Raman spectroscopy. Our HR spectroscopic system significantly improves sensitivity that enables the detection of HR bands of benzene and pyridine not observed before. In addition to band assignments, we interpret HR bands of benzene based on the vibronic coupling theory of (pre-) resonance hyper-Raman scattering. Depolarization ratios of HR bands of benzene and pyridine, obtained from polarized-HR measurements, are first examined from a theoretical point of view of HR spectroscopy. Moreover, we evaluate quantum chemical calculations for HR spectra by comparing experimental and computational spectra. We show that the frequency-dependent polarizability and hyperpolarizability calculations using time-dependent density functional theory well reproduce the HR experiments for bulk aromatic compounds.

6.
J Phys Chem B ; 125(37): 10639-10646, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34503330

RESUMO

The evaporation of molecules from water-organic solute binary mixtures is key for both atmospheric and industrial processes such as aerosol formation and distillation. Deviations from ideal evaporation energetics can be assigned to intermolecular interactions in solution, yet evaporation occurs from the interface, and the poorly understood interfacial, rather than the bulk, structure of binary mixtures affects evaporation kinetics. Here we determine the interfacial structure of nonideal binary mixtures of water with methanol, ethanol, and formic acid, by combining surface-specific vibrational spectroscopy with molecular dynamics simulations. We find that the free, dangling OH groups at the interfaces of these differently behaving nonideal mixtures are essentially indistinguishable. In contrast, the ordering of hydrogen-bonded interfacial water molecules differs substantially at these three interfaces. Specifically, the interfacial water molecules become more disordered (ordered) in mixtures with methanol and ethanol (formic acid), showing higher (lower) vapor pressure than that predicted by Raoult's law.

7.
J Phys Chem Lett ; 12(20): 4780-4785, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33988365

RESUMO

We have demonstrated hyper-Raman (HR) spectroscopy of N-methylacetamide (NMA) for the first time. Fundamental knowledge of amide bands in HR spectra has been obtained. HR spectra of NMA exhibit various amide bands with different intensity patterns from Raman and IR spectra. The amide III and II signals were strongly observed, suggesting the possible application of HR spectroscopy to analyze secondary structures, complementary to IR and Raman spectroscopy. The peak positions of HR amide bands sharply reflect the hydrogen-bonding environment around the molecule. The depolarization ratios of the amide II and III bands at 532 nm excitation suggest the resonance HR effect via the π-π* transition. In contrast, that of the amide I band of neat NMA indicates the contribution of high energy transitions to its signal enhancement. This work proposes that HR spectroscopy can be a powerful tool for studying the molecular structure and environment of biomolecules with peptide bonds.

8.
ACS Appl Mater Interfaces ; 13(16): 19138-19147, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870694

RESUMO

The exploration of composition-structure-function relationship in proton-conducting solids remains a challenge in materials chemistry. Polyoxometalate-based compounds have been long considered as candidates for proton conductors; however, their low structural stability and a large decrease in conductivity under reduced relative humidity (RH) have limited their applications. To overcome such limitations, the hybridization of polyoxometalates with proton-conducting polymers has emerged as a promising method. Besides, 4f lanthanide ions possess a high coordination number, which can be utilized to attract water molecules and to build robust frameworks. Herein, a Preyssler-type polyoxometalate functionalized with a 9-coordinate Eu3+ (Eu[P5W30O110K]11-) is newly synthesized and combined with poly(allylamine) with amine moieties as protonation sites. The resulting robust crystalline composite exhibits an ultrahigh proton conductivity >10-2 S cm-1 at 368 K and 90% RH, which is still >10-3 S cm-1 at 50% RH, due to the strengthened and extended hydrogen-bonding network.

9.
Nat Commun ; 11(1): 5977, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239630

RESUMO

Coupling between vibrational modes is essential for energy transfer and dissipation in condensed matter. For water, different O-H stretch modes are known to be very strongly coupled both within and between water molecules, leading to ultrafast dissipation and delocalization of vibrational energy. In contrast, the information on the vibrational coupling of the H-O-H bending mode of water is lacking, even though the bending mode is an essential intermediate for the energy relaxation pathway from the stretch mode to the heat bath. By combining static and femtosecond infrared, Raman, and hyper-Raman spectroscopies for isotopically diluted water with ab initio molecular dynamics simulations, we find the vibrational coupling of the bending mode differs significantly from the stretch mode: the intramode intermolecular coupling of the bending mode is very weak, in stark contrast to the stretch mode. Our results elucidate the vibrational energy transfer pathways of water. Specifically, the librational motion is essential for the vibrational energy relaxation and orientational dynamics of H-O-H bending mode.

10.
J Phys Chem Lett ; 11(20): 8527-8531, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32926624

RESUMO

Sum Frequency Generation (SFG) is usually governed by surface-selective signals of dipole origin, but it can also contain some bulk signals of quadrupole origin. In this work, we examined the dipole and quadrupole contributions in the C═O stretching band of organic carbonate liquids with collaboration of heterodyne SFG measurement and theoretical analysis. As a result, we found that these spectra are substantially affected by the quadrupole contribution of the bulk, which resolved the discrepancy between the experimental and computational SFG spectra.

11.
J Phys Chem Lett ; 11(19): 8459-8469, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931284

RESUMO

Insights into the microscopic structure and dynamics of the water's hydrogen-bonded network are crucial to understand the role of water in biology, atmospheric and geochemical processes, and chemical reactions in aqueous systems. Vibrational spectroscopy of water has provided many such insights, in particular using the O-H stretch mode. In this Perspective, we summarize our recent studies that have revealed that the H-O-H bending mode can be an equally powerful reporter for the microscopic structure of water and provides more direct access to the hydrogen-bonded network than the conventionally studied O-H stretch mode. We discuss the fundamental vibrational properties of the water bending mode, such as the intermolecular vibrational coupling, and its effects on the spectral lineshapes and vibrational dynamics. Several examples of static and ultrafast bending mode spectroscopy illustrate how the water bending mode provides an excellent window on the microscopic structure of both bulk and interfacial water.

12.
J Chem Phys ; 152(17): 174202, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32384835

RESUMO

Hyper-Raman (HR) spectra of polar liquids are reported. Acetone, acetonitrile, chloroform, and dimethyl sulfoxide in the liquid phase were measured by using a picosecond laser whose wavelength is 1064 nm and repetition rate is 200 kHz. HR spectra with a high signal to noise ratio were obtained without the surface enhancement or the electronic resonance effect. Due to the improvement of the sensitivity, many vibrational bands were first observed in HR spectroscopy. The peak frequencies, relative intensities, band assignments, including symmetry species, and depolarization ratios are examined. All IR active vibrational modes well separated were, indeed, observed in HR spectra following the selection rule, whereas HR spectra show not only similarity but also difference in relative signal intensities compared with IR spectra. This work demonstrates the possibility of HR spectra in the liquid phase and suggests further research on molecular structures by HR spectroscopy.

13.
J Phys Chem Lett ; 11(7): 2422-2429, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32163290

RESUMO

We studied the supramolecular structure between barbituric acid (pyrimidine-2,4,6(1H,3H,5H)-trione, BA) and an amphiphilic melamine derivative at the air/water interface by heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy. HD-VSFG measurements in situ showed a positive broad band from 2300 to 2950 cm-1. By comparing the experimental results with ab initio molecular dynamics (AIMD) simulations, we assigned the broad band to the NH stretching modes of BA strongly hydrogen-bonded to the melamine derivative. In addition, we report in situ HD-VSFG spectra of the interfacial supramolecular structure in the CO stretching region. Two CO stretching bands were identified. On the basis of the signs of the C=O bands, we uniquely determined the orientation of BA. The strong hydrogen bonds and the molecular orientations are direct evidence for the supramolecular structure based on complementary hydrogen bonds at the air/water interface.

15.
J Chem Phys ; 149(24): 244703, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30599748

RESUMO

Polarization dependence of heterodyne-detected chiral vibrational sum frequency generation (VSFG) was examined for thin films of polylactic acids and neat limonene liquid far from electronic resonance. The enantiomers of polylactic acid films on silica substrates were successfully distinguished, and their chiral VSFG signals were ascribed not to bulk but to the interfaces by comparing chiral signals observed in reflection in the S-polarized VSFG, P-polarized visible, and P-polarized infrared and P-polarized VSFG, S-polarized visible, and P-polarized infrared polarization combinations with theoretical model calculations. In the same way, the chiral VSFG signal of neat limonene was assigned to bulk, which is consistent with the previous assignment. The method employed for assigning the source of chiral signals to the bulk or the interface may be useful for organic films on substrates with low refractive indices and thick samples.

16.
Phys Chem Chem Phys ; 19(3): 2060-2066, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28044171

RESUMO

Heterodyne-detected (phase-sensitive) vibrational sum frequency generation spectroscopy was used to investigate molecular structures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers on water (Langmuir monolayer) and monolayers on a fused silica substrate (Langmuir-Blodgett [LB] monolayer). The spectral features in the CH stretching region depended on the phase of the Langmuir monolayer, which was controlled by the molecular area on water. From the spectral changes, the molecular structure of the monolayer in each phase was deduced at the molecular level. We discovered that when we compared Langmuir and LB monolayers, both of which correspond to a similar surface pressure, the LB monolayer tended to have fewer gauche defects and have less tilted terminal methyls in the n-pentadecyl groups than the corresponding Langmuir monolayer. In addition, weak vibrational bands, which have been hardly seen by the conventional (homodyne-detected) VSFG spectroscopy, were clearly observed with their phases, or arguments, for the first time.

17.
Anal Chem ; 87(19): 10103-8, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26355996

RESUMO

Heterodyne-detected vibrationally electronically doubly resonant chiral sum frequency generation (HD-DR chiral SFG) spectroscopy has been developed for the study of chiral molecules with chromophores. The method enables us to detect and distinguish chiral molecules with high sensitivity and to obtain information on molecular vibrations. Strong enhancement due to the electronic resonance improves the sensitivity, and heterodyne detection ensures that the signal intensity is linear to the sample concentration. Detection of HD-DR chiral SFG signal from a dilute solution of binaphthol with 20 mM concentration and tens of nanometers thickness was demonstrated. Taking advantage of the enantiomer-dependent sign and linearity of the signal to the concentration, molecular concentrations and enantiomeric excesses were accurately evaluated. HD-DR chiral SFG is expected to have widespread application in the study of molecular chirality of thin films or samples of a very small quantity.


Assuntos
Naftóis/química , Elétrons , Modelos Moleculares , Espectrofotometria Infravermelho/métodos , Análise Espectral , Estereoisomerismo
18.
Nat Commun ; 6: 8384, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26382651

RESUMO

Because of strong hydrogen bonding in liquid water, intermolecular interactions between water molecules are highly delocalized. Previous two-dimensional infrared spectroscopy experiments have indicated that this delocalization smears out the structural heterogeneity of neat H2O. Here we report on a systematic investigation of the ultrafast vibrational relaxation of bulk and interfacial water using time-resolved infrared and sum-frequency generation spectroscopies. These experiments reveal a remarkably strong dependence of the vibrational relaxation time on the frequency of the OH stretching vibration of liquid water in the bulk and at the air/water interface. For bulk water, the vibrational relaxation time increases continuously from 250 to 550 fs when the frequency is increased from 3,100 to 3,700 cm(-1). For hydrogen-bonded water at the air/water interface, the frequency dependence is even stronger. These results directly demonstrate that liquid water possesses substantial structural heterogeneity, both in the bulk and at the surface.

19.
J Chem Phys ; 142(17): 171101, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25956079

RESUMO

The behavior of water molecules at the surface of nonionic surfactant (monomyristolein) and effects of monovalent ions on the behavior are investigated using the heterodyne-detected vibrational sum frequency generation spectroscopy. It is found that water molecules at the surface are oriented with their hydrogen atoms pointing to the bulk, and that the degree of orientation depends on the anion strongly but weakly on the cation. With measured surface potentials in those saline solutions, it is concluded that the heterogeneous distribution of anions and cations in combination with the nonionic surfactant causes the water orientation. This heterogeneous distribution well explains the contrasting order of anions and cations with respect to the ion size in the Hofmeister series.

20.
Anal Sci ; 31(4): 299-305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25864673

RESUMO

The subnanosecond "white-light laser" source has been applied to multimodal, multiphoton, and multiplex spectroscopic imaging (M(3) spectroscopic imaging) with coherent anti-Stokes Raman scattering (CARS), third-order sum frequency generation (TSFG), and two-photon excitation fluorescence (TPEF). As the proof-of-principle experiment, we performed simultaneous imaging of polystyrene beads with TSFG and TPEF. This technique is then applied to live cell imaging. Mouse L929 fibroblastic cells are clearly visualized by CARS, TSFG, and TPEF processes. M(3) spectroscopic imaging provides various and unique cellular information with different image contrast based on each multiphoton process.


Assuntos
Lasers , Microscopia de Fluorescência por Excitação Multifotônica , Imagem Molecular/métodos , Imagem Multimodal/métodos , Análise Espectral Raman , Animais , Linhagem Celular , Sobrevivência Celular , Camundongos , Microesferas , Poliestirenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...