Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(7): 3989-4001, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38340338

RESUMO

Protein-protein and protein-rRNA interactions at the interface between ribosomal proteins uS4 and uS5 are thought to maintain the accuracy of protein synthesis by increasing selection of cognate aminoacyl-tRNAs. Selection involves a major conformational change-domain closure-that stabilizes aminoacyl-tRNA in the ribosomal acceptor (A) site. This has been thought a constitutive function of the ribosome ensuring consistent accuracy. Recently, the Saccharomyces cerevisiae Ctk1 cyclin-dependent kinase was demonstrated to ensure translational accuracy and Ser238 of uS5 proposed as its target. Surprisingly, Ser238 is outside the uS4-uS5 interface and no obvious mechanism has been proposed to explain its role. We show that the true target of Ctk1 regulation is another uS5 residue, Ser176, which lies in the interface opposite to Arg57 of uS4. Based on site specific mutagenesis, we propose that phospho-Ser176 forms a salt bridge with Arg57, which should increase selectivity by strengthening the interface. Genetic data show that Ctk1 regulates accuracy indirectly; the data suggest that the kinase Ypk2 directly phosphorylates Ser176. A second kinase pathway involving TORC1 and Pkc1 can inhibit this effect. The level of accuracy appears to depend on competitive action of these two pathways to regulate the level of Ser176 phosphorylation.


Assuntos
Arginina , Fosfosserina , Biossíntese de Proteínas , Proteínas Quinases , Proteínas Ribossômicas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/química , Arginina/metabolismo , Arginina/química , Fosfosserina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Fosforilação , Evolução Molecular
2.
Am J Hematol ; 99(1): 113-123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009642

RESUMO

Burkitt lymphoma (BL) is an aggressive B-cell lymphoma that significantly contributes to childhood cancer burden in sub-Saharan Africa. Plasmodium falciparum, which causes malaria, is geographically associated with BL, but the evidence remains insufficient for causal inference. Inference could be strengthened by demonstrating that mendelian genes known to protect against malaria-such as the sickle cell trait variant, HBB-rs334(T)-also protect against BL. We investigated this hypothesis among 800 BL cases and 3845 controls in four East African countries using genome-scan data to detect polymorphisms in 22 genes known to affect malaria risk. We fit generalized linear mixed models to estimate odds ratios (OR) and 95% confidence intervals (95% CI), controlling for age, sex, country, and ancestry. The ORs of the loci with BL and P. falciparum infection among controls were correlated (Spearman's ρ = 0.37, p = .039). HBB-rs334(T) was associated with lower P. falciparum infection risk among controls (OR = 0.752, 95% CI 0.628-0.9; p = .00189) and BL risk (OR = 0.687, 95% CI 0.533-0.885; p = .0037). ABO-rs8176703(T) was associated with decreased risk of BL (OR = 0.591, 95% CI 0.379-0.992; p = .00271), but not of P. falciparum infection. Our results increase support for the etiological correlation between P. falciparum and BL risk.


Assuntos
Linfoma de Burkitt , Malária Falciparum , Malária , Traço Falciforme , Humanos , África Oriental , Alelos , Linfoma de Burkitt/epidemiologia , Linfoma de Burkitt/genética , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Malária Falciparum/complicações , Traço Falciforme/epidemiologia , Traço Falciforme/genética , Traço Falciforme/complicações , Nectinas/metabolismo
3.
Nat Commun ; 6: 8139, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26404089

RESUMO

The phytohormone abscisic acid (ABA) is important for growth, development and stress responses in plants. Recent research has identified ABA receptors and signalling components that regulate seed germination and stomatal closure. However, proteins that regulate ABA signalling remain poorly understood. Here we use a forward-genetic screen to identify rbm25-1 and rbm25-2, two Arabidopsis mutants with increased sensitivity to growth inhibition by ABA. Using RNA-seq, we found that RBM25 controls the splicing of many pre-mRNAs. The protein phosphatase 2C HAB1, a critical component in ABA signalling, shows a dramatic defect in pre-mRNA splicing in rbm25 mutants. Ectopic expression of a HAB1 complementary DNA derived from wild-type mRNAs partially suppresses the rbm25-2 mutant phenotype. We suggest that RNA splicing is of particular importance for plant response to ABA and that the splicing factor RBM25 has a critical role in this response.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Fosfoproteínas Fosfatases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Mensageiro/metabolismo , Motivos de Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Isoleucina , Mutação , Fosfoproteínas Fosfatases/metabolismo , Prolina , Splicing de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Triptofano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...