Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 360: 121116, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772230

RESUMO

This research paper delves into the intricate interplay between decarbonisation and sustainability, focusing on adopting chemical looping technologies. Deep decarbonisation scenarios necessitate a profound transformation in various sectors to mitigate climate change, and oil refineries, as pivotal players, must adapt to these changes. Employing the BLUES integrated assessment model, we evaluate the evolution of the refining sector in decarbonisation pathways, emphasising its potential for sustainability through repurposing and emissions mitigation. Additionally, we delve into chemical looping technologies, including Solar Thermal Chemical Looping (STCL), Reverse Water Gas Shift Chemical Looping (RWGS-CL), Chemical Looping Reforming (CLR), and Super Dry Reforming (SDR), elucidating their principles and contributions to carbon dioxide (CO2) conversion. These technologies offer promising routes for CO2 capture and present opportunities for sustainable carbon loop cycles, potentially revolutionising industries' emissions reduction efforts. In a world of climate change, this research illuminates a sustainable path forward by integrating decarbonisation and innovative CO2 management strategies.


Assuntos
Dióxido de Carbono , Mudança Climática
2.
Sci Total Environ ; 905: 167109, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37717760

RESUMO

In a world grappling with environmental challenges and the need for sustainable manufacturing practices, the convergence of 3D printing and recycling emerges as a promising solution. This research paper explores the potential of combining these two technologies and comprehensively analyses their synergistic effects. The study delves into the printability of recycled materials, evaluating their suitability for 3D printing and comparing their performance with conventional materials. The environmental impact of 3D printing with recycled materials is examined through a sustainability analysis and a life cycle assessment of recycled 3D printed objects. The findings reveal significant benefits, including enhanced resource efficiency, waste reduction, and customisation possibilities. The research also identifies challenges and opportunities for scaling up the use of recycled materials in 3D printing, highlighting the importance of collaboration, innovation, and regulations. With potential applications spanning various industries, from prototyping to construction and healthcare, the implications of this research are far-reaching. By embracing sustainable practices, industry collaboration, and innovation, the integration of 3D printing and recycling can pave the way for a more sustainable future, where resource conservation, circularity, and customised production are at the forefront of manufacturing.

3.
Sci Total Environ ; 894: 165046, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37355139

RESUMO

As global concerns about climate change and resource scarcity grow, the need for sustainable practices in manufacturing is becoming increasingly important. 3D printing, a rapidly developing technology, has the potential to mitigate environmental impacts by reducing material waste and enabling decentralised production. This article investigates the sustainability of 3D printing filament recycling, focusing on achieving net-zero emissions. We analyse the environmental impact, energy consumption, and potential for reducing waste in filament recycling and provide recommendations for improving sustainability. Recycling these filaments has been identified as a potential solution to reduce the amount of plastic waste generated. This paper explores the concept of achieving net zero on 3D printing filament recycling, focusing on the sustainable analysis of the process. A literature review was conducted to understand the current state of 3D printing filament recycling and the challenges of achieving net zero. The review was supplemented with interviews with industry experts to gain a more in-depth understanding of the challenges and potential solutions. The results show that achieving net zero on 3D printing filament recycling is possible. However, it requires a holistic approach that considers the entire lifecycle of the filament. The paper discusses the implications of achieving net zero on 3D printing filament recycling for sustainability and the circular economy.

4.
Colloids Surf B Biointerfaces ; 216: 112583, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35662072

RESUMO

The composite coating can effectively inhibit bacterial proliferation and promote the expression of bone-building genes in-vitro. Therefore, a novel production was used to produce poly-ether-ether-ketone, and reduced graphene oxide (PEEK-rGO) scaffolds with ratios of 1-3%, combining a different lattice for a bone implant. An inexpensive method was developed to prepare the new coatings on the PEEK scaffold with reduced graphene oxide (rGO). Mechanical testing, data analysis and cell culture tests for in-vitro biocompatibility scaffold characterisation for the PEEK composite were conducted. Novel computation microanalysis of four-dimensional (4D) printing of microstructure of PEEK-rGO concerning the grain size and three dimensional (3D) morphology was influenced by furrow segmentation of grains cell growth on the composite, which was reduced from an average of 216-155 grains and increased to 253 grains on the last day. The proposed spherical nanoparticles cell grew with time after dispersed PEEK nanoparticles in calcium hydroxyapatite (cHAp) grains. Also, the mechanical tests were carried out to validate the strength of the new composites and compare them to that of a natural bone. The established 3D-printed PEEK composite scaffolds significantly exhibited the potential of bone implants for biomimetic heterogeneous bone repair.


Assuntos
Polietilenoglicóis , Polímeros , Benzofenonas , Éteres , Grafite , Cetonas/química , Cetonas/farmacologia , Polietilenoglicóis/química , Polímeros/química
5.
Colloids Surf B Biointerfaces ; 203: 111726, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33865088

RESUMO

Poly ether-ether-ketone (PEEK) is a polymer with better lignin biocompatibility than other polymers. It is good for biomedical engineering applications. This research summarises the outcomes of an evaluation conducted on PEEK material composites, such as cellular calcium hydroxyapatite (CHAp) for medical applications. Prospects of PEEK for medical implant are highlighted. Critical analysis and review on 3D printing of PEEK, CHAp and their biological macromolecular behaviours are presented. An electronic search was carried out on Scupos database, Google search and peer-reviewed papers published in the last ten years. Because of the extraordinary strength and biological behaviours of PEEK and its composite of CHAp, 3D-printed PEEK has several biomedical applications, and its biological macromolecular behaviour leads to health sustainability. This work highlights its biological macromolecular behaviours as a bone implant material and the optimum 3D printing process for PEEK and CHAp for medical applications. The current problems with printing PEEK and CHAp are investigated along with their possible uses. Possible solutions to improve the 3D printability of PEEK and CHAp are explained based on scientific mechanisms. This detailed report stands to benefit both scientific community and medical industry to enhance 3D printing concepts for PEEK and CHAp.


Assuntos
Éter , Cetonas , Éteres , Polietilenoglicóis , Impressão Tridimensional
6.
Mater Chem Phys ; 258: 123943, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33106717

RESUMO

The outbreak of coronavirus disease in 2019 (COVID-19) caused by the SARS-CoV-2 virus and its pandemic effects have created a demand for essential medical equipment. To date, there are no specific, clinically significant licensed drugs and vaccines available for COVID-19. Hence, mapping out COVID-19 problems and preventing the spread with relevant technology are very urgent. This study is a review of the work done till October, 2020 on solving COVID-19 with 3D printing. Many patients who need to be hospitalized because of COVID-19 can only survive on bio-macromolecules antiviral respiratory assistance and other medical devices. A bio-cellular face shield with relative comfortability made of bio-macromolecules polymerized polyvinyl chloride (BPVC) and other biomaterials are produced with 3D printers. Summarily, it was evident from this review study that additive manufacturing (AM) is a proffered technology for efficient production of an improved bio-macromolecules capable of significant COVID-19 test and personal protective equipment (PPE) to reduce the effect of COVID-19 on the world economy. Innovative AM applications can play an essential role to combat invisible killers (COVID-19) and its hydra-headed pandemic effects on humans, economics and society.

7.
Int J Biol Macromol ; 165(Pt A): 50-62, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979443

RESUMO

The addition of biomaterials such as Calcium Hydroxyapatite (cHAp) and incorporation of porosity into poly-ether-ether-ketone (PEEK) are effective ways to improve bone-implant interfaces and osseointegration of PEEK composite. Hence, the morphological effects of nanocomposite on surfaces biocompatibility of a newly fabricated composite of PEEK polymer and cHAp for a bone implant, using additive manufacturing (AM) were investigated. Fused deposition modeling (FDM) method and a surface treatment strategy were employed to create a microporous scaffold. PEEK osteointegration was slow and, therefore, it was accelerated by surface coatings with the incorporation of bioactive cHAp, with enhanced mechanical and biological behaviors for bone implants. Characterization of the new PEEK/cHAp composite was done by X-ray diffraction (XRD), differential scanning calorimetry (DSC), mechanical tests of traction and flexion, thermal dynamic mechanical analysis (DMA). Also, the PEEK/cHAp induced the formation of apatite after immersion in the simulated body fluid of DMEM for differentdays to check its biological bioactivity for an implant. In-vivo results depicted that the osseointegration and the biological activity around the PEEK/cHAp composite were higher than that of PEEK. The increase in the mechanical performance of cHAp-coated PEEK can be attributed to the increase in the degree of crystallinity and accumulation of residual polymer.


Assuntos
Materiais Biocompatíveis/química , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Animais , Benzofenonas , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Desenvolvimento Ósseo/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Interface Osso-Implante , Técnicas de Cultura de Células , Durapatita/química , Durapatita/farmacologia , Humanos , Cetonas/química , Cetonas/farmacologia , Mamíferos , Microscopia de Força Atômica , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polímeros/síntese química , Polímeros/química , Polímeros/farmacologia , Porosidade , Impressão Tridimensional , Próteses e Implantes , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...