Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(24): e2400163121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830098

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with a high fatality rate of up to 30% caused by SFTS virus (SFTSV). However, no specific vaccine or antiviral therapy has been approved for clinical use. To develop an effective treatment, we isolated a panel of human monoclonal antibodies (mAbs). SF5 and SF83 are two neutralizing mAbs that recognize two viral glycoproteins (Gn and Gc), respectively. We found that their epitopes are closely located, and we then engineered them as several bispecific antibodies (bsAbs). Neutralization and animal experiments indicated that bsAbs display more potent protective effects than the parental mAbs, and the cryoelectron microscopy structure of a bsAb3 Fab-Gn-Gc complex elucidated the mechanism of protection. In vivo virus passage in the presence of antibodies indicated that two bsAbs resulted in less selective pressure and could efficiently bind to all single parental mAb-escape mutants. Furthermore, epitope analysis of the protective mAbs against SFTSV and RVFV indicated that they are all located on the Gn subdomain I, where may be the hot spots in the phleboviruses. Collectively, these data provide potential therapeutic agents and molecular basis for the rational design of vaccines against SFTSV infection.


Assuntos
Anticorpos Biespecíficos , Anticorpos Neutralizantes , Anticorpos Antivirais , Phlebovirus , Animais , Anticorpos Biespecíficos/imunologia , Camundongos , Anticorpos Neutralizantes/imunologia , Phlebovirus/imunologia , Humanos , Anticorpos Antivirais/imunologia , Glicoproteínas/imunologia , Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Modelos Animais de Doenças , Febre Grave com Síndrome de Trombocitopenia/imunologia , Febre Grave com Síndrome de Trombocitopenia/prevenção & controle
2.
Avicenna J Phytomed ; 11(4): 353-366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290967

RESUMO

OBJECTIVE: A fraction from Khaya grandifoliola has recently been shown to inhibit hepatitis C virus (HCV) infection and three limonoids (17-epi-methyl-6-hydroxylangolensate, 7-deacetoxy-7-oxogedunin and 7-deacetoxy-7R-hydroxygedunin) were purified from this fraction. The present study aimed at assessing the inhibitory effect of these limonoids on HCV using cell-culture derived HCV (HCVcc) system. MATERIALS AND METHODS: Cytotoxic effects of the limonoids on Huh7.5 cells were assessed by MTT assay. Huh7.5 cells were transfected with RNA transcripts of the plasmid Jc1/GLuc2a, carrying a Gaussia luciferase reporter gene to rescue the HCVcc particles which were used to infect naïve cells in the presence or absence of the studied limonoids during 72 hr. Infection and replication rates were monitored by luciferase reporter assay and immunofluorescence assay (IFA) while cellular gene expression was analyzed by western blot, respectively. RESULTS: The limonoids inhibited HCV infection mostly by targeting entry and replication stage. Their inhibitory effect on entry step, comparable to that of anti-CD81 antibody, was related to the blocking of CD81 receptor. In the replication step, the limonoids decreased the expression of NS5B similar to danoprevir. These compounds also significantly decreased but up-regulated the expression of Class-III phosphatidylinositol 4-kinase alpha and 2',5'-oligoadenylate synthase-3, respectively. CONCLUSION: The present findings suggest that limonoids from K. grandifoliola are potential anti-HCV agents and may offer an advantage in the treatment of HCV infection.

3.
Egypt J Med Hum Genet ; 21(1): 77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-38624552

RESUMO

Background: Numerous research studies have identified specific human gene variants that affect enhanced susceptibility to viral infections. More recently is the current pandemic where the SARS-CoV-2 infection has shown a high degree of person-to-person clinical variability. A wide range of disease severity occurs in the patients' experiences, from asymptomatic cases, mild infections to serious life threatening conditions requiring admission into the intensive care unit (ICU). Main body of the abstract: Although, it is generally reported that age and co-morbidities contribute significantly to the variations in the clinical outcome of the scourge of COVID-19, a hypothetical question of the possibility of genetic involvement in the susceptibility and severity of the disease arose when some unique severe outcomes were seen among young patients with no co-morbidity. The role human genetics play in clinical response to the viral infections is scarcely understood; however, several ongoing researches all around the world are currently focusing on possible genetic factors. This review reports the possible genetic factors that have been widely studied in defining the severity of viral infections using SARS-CoV-2 as a case study. These involve the possible involvements of ACE2, HLA, and TLR genes such as TLR7 and TLR3 in the presentation of a more severe condition. Short conclusion: Understanding these variations could help to inform efforts to identify people at increased risk of infection outbreaks through genetic diagnosis of infections by locating disease genes or mutations that predispose patients to severe infection. This will also suggest specific targets for therapy and prophylaxis.

4.
Protein Cell ; 7(12): 888-898, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27650953

RESUMO

Ebola virus (EBOV) harbors an RNA genome encapsidated by nucleoprotein (NP) along with other viral proteins to form a nucleocapsid complex. Previous Cryo-eletron tomography and biochemical studies have shown the helical structure of EBOV nucleocapsid at nanometer resolution and the first 450 amino-acid of NP (NPΔ451-739) alone is capable of forming a helical nucleocapsid-like complex (NLC). However, the structural basis for NP-NP interaction and the dynamic procedure of the nucleocapsid assembly is yet poorly understood. In this work, we, by using an E. coli expression system, captured a series of images of NPΔ451-739 conformers at different stages of NLC assembly by negative-stain electron microscopy, which allowed us to picture the dynamic procedure of EBOV nucleocapsid assembly. Along with further biochemical studies, we showed the assembly of NLC is salt-sensitive, and also established an indispensible role of RNA in this process. We propose the diverse modes of NLC elongation might be the key determinants shaping the plasticity of EBOV virions. Our findings provide a new model for characterizing the self-oligomerization of viral nucleoproteins and studying the dynamic assembly process of viral nucleocapsid in vitro.


Assuntos
Ebolavirus/química , Nucleocapsídeo/química , Montagem de Vírus , Ebolavirus/genética , Ebolavirus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...