Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Phys Eng ; 13(1): 77-88, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36818006

RESUMO

Background: Eye melanoma is deforming in the eye, growing and developing in tissues inside the middle layer of an eyeball, resulting in dark spots in the iris section of the eye, changes in size, the shape of the pupil, and vision. Objective: The current study aims to diagnose eye melanoma using a gray level co-occurrence matrix (GLCM) for texture extraction and soft computing techniques, leading to the disease diagnosis faster, time-saving, and prevention of misdiagnosis resulting from the physician's manual approach. Material and Methods: In this experimental study, two models are proposed for the diagnosis of eye melanoma, including backpropagation neural networks (BPNN) and radial basis functions network (RBFN). The images used for training and validating were obtained from the eye-cancer database. Results: Based on our experiments, our proposed models achieve 92.31% and 94.70% recognition rates for GLCM+BPNN and GLCM+RBFN, respectively. Conclusion: Based on the comparison of our models with the others, the models used in the current study outperform other proposed models.

2.
Acad Radiol ; 28(11): 1507-1523, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34649779

RESUMO

RATIONALE AND OBJECTIVE: To perform a meta-analysis to compare the diagnostic test accuracy (DTA) of deep learning (DL) in detecting coronavirus disease 2019 (COVID-19), and to investigate how network architecture and type of datasets affect DL performance. MATERIALS AND METHODS: We searched PubMed, Web of Science and Inspec from January 1, 2020, to December 3, 2020, for retrospective and prospective studies on deep learning detection with at least reported sensitivity and specificity. Pooled DTA was obtained using random-effect models. Sub-group analysis between studies was also carried out for data source and network architectures. RESULTS: The pooled sensitivity and specificity were 91% (95% confidence interval [CI]: 88%, 93%; I2 = 69%) and 92% (95% CI: 88%, 94%; I2 = 88%), respectively for 19 studies. The pooled AUC and diagnostic odds ratio (DOR) were 0.95 (95% CI: 0.88, 0.92) and 112.5 (95% CI: 57.7, 219.3; I2 = 90%) respectively. The overall accuracy, recall, F1-score, LR+ and LR- are 89.5%, 89.5%, 89.7%, 23.13 and 0.13. Sub-group analysis shows that the sensitivity and DOR significantly vary with the type of network architectures and sources of data with low heterogeneity are (I2 = 0%) and (I2 = 18%) for ResNet architecture and single-source datasets, respectively. CONCLUSION: The diagnosis of COVID-19 via deep learning has achieved incredible performance, and the source of datasets, as well as network architectures, strongly affect DL performance.


Assuntos
COVID-19 , Aprendizado Profundo , Testes Diagnósticos de Rotina , Humanos , Estudos Prospectivos , Estudos Retrospectivos , SARS-CoV-2
3.
Diagnostics (Basel) ; 10(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260639

RESUMO

BACKGROUND: The pooled prevalence of chest computed tomography (CT) abnormalities and other detailed analysis related to patients' biodata like gender and different age groups have not been previously described for patients with coronavirus disease 2019 (COVID-19), thus necessitating this study. Objectives: To perform a meta-analysis to evaluate the diagnostic performance of chest CT, common CT morphological abnormalities, disease prevalence, biodata information, and gender prevalence of patients. METHODS: Studies were identified by searching PubMed and Science Direct libraries from 1 January 2020 to 30 April 2020. Pooled CT positive rate of COVID-19 and RT-PCR, CT-imaging features, history of exposure, and biodata information were estimated using the quality effect (QE) model. RESULTS: Out of 36 studies included, the sensitivity was 89% (95% CI: 80-96%) and 98% (95% CI: 90-100%) for chest CT and reverse transcription-polymerase chain reaction (RT-PCR), respectively. The pooled prevalence across lesion distribution were 72% (95% CI: 62-80%), 92% (95% CI: 84-97%) for lung lobe, 88% (95% CI: 81-93%) for patients with history of exposure, and 91% (95% CI: 85-96%) for patients with all categories of symptoms. Seventy-six percent (95% CI: 67-83%) had age distribution across four age groups, while the pooled prevalence was higher in the male with 54% (95% CI: 50-57%) and 46% (95% CI: 43-50%) in the female. CONCLUSIONS: The sensitivity of RT-PCR was higher than chest CT, and disease prevalence appears relatively higher in the elderly and males than children and females, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...