Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Syst Evol ; 9: 27-42, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35978985

RESUMO

A new genus named Dendrodacrys is proposed for a monophyletic group in Dacrymycetaceae, containing species with pulvinate to depressed basidiocarps, distinctly branched hymenial hyphidia, and up to 3-septate mature basidiospores. Four taxa in this group, occurring in Europe, are proposed as new species, viz. De. ciprense, De. concrescens, De. ellipsosporum, and De. oblongisporum, based both on morphological and DNA data (nrDNA, RPB1, RPB2, TEF-1α, 12S). These new species are all described in detail, illustrated, and compared with other published taxa that with which they can be confounded. The new combination De. paraphysatum is proposed after revising the type material of Dacrymyces paraphysatus, but other combinations or potentially new non-European species descriptions are postponed pending further studies of additional specimens. Citation: Zamora JC, Savchenko A, González-Cruz Á, Prieto-García F, Olariaga I, Ekman S (2022). Dendrodacrys: a new genus for species with branched hyphidia in Dacrymyces s.l., with the description of four new species. Fungal Systematics and Evolution 9: 27-42. doi: 10.3114/fuse.2022.09.04.

2.
Stud Mycol ; 96: 155-184, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32774511

RESUMO

Typhuloid fungi are a very poorly known group of tiny clavarioid homobasidiomycetes. The phylogenetic position and family classification of the genera targeted here, Ceratellopsis, Macrotyphula, Pterula sensu lato and Typhula, are controversial and based on unresolved phylogenies. Our six-gene phylogeny with an expanded taxon sampling shows that typhuloid fungi evolved at least twice in the Agaricales (Pleurotineae, Clavariineae) and once in the Hymenochaetales. Macrotyphula, Pterulicium and Typhula are nested within the Pleurotineae. The type of Typhula (1818) and Sclerotium (1790), T. phacorrhiza and S. complanatum (synonym T. phacorrhiza), are encompassed in the Macrotyphula clade that is distantly related to a monophyletic group formed by species usually assigned to Typhula. Thus, the correct name for Macrotyphula (1972) and Typhula is Sclerotium and all Typhula species but those in the T. phacorrhiza group need to be transferred to Pistillaria (1821). To avoid undesirable nomenclatural changes, we suggest to conserve Typhula with T. incarnata as type. Clavariaceae is supported as a separate, early diverging lineage within Agaricales, with Hygrophoraceae as a successive sister taxon to the rest of the Agaricales. Ceratellopsis s. auct. is polyphyletic because C. acuminata nests in Clavariaceae and C. sagittiformis in the Hymenochaetales. Ceratellopsis is found to be an earlier name for Pterulicium, because the type, C. queletii, represents Pterulicium gracile (synonym Pterula gracilis), deeply nested in the Pterulicium clade. To avoid re-combining a large number of names in Ceratellopsis we suggest to conserve it with C. acuminata as type. The new genus Bryopistillaria is created to include C. sagittiformis. The families Sarcomyxaceae and Phyllotopsidaceae, and the suborder Clavariineae, are described as new. Six new combinations are proposed and 15 names typified.

3.
Stud Mycol ; 90: 71-118, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29276320

RESUMO

Fresh collections, type studies and molecular phylogenetic analyses of a multigene matrix of partial nuSSU-ITS-LSU rDNA, rpb2, tef1 and tub2 sequences were used to evaluate the boundaries of Cucurbitaria in a strict sense and of several related genera of the Cucurbitariaceae. Two species are recognised in Cucurbitaria and 19 in Neocucurbitaria. The monotypic genera Astragalicola, Cucitella, Parafenestella, Protofenestella, and Seltsamia are described as new. Fenestella is here included as its generic type F. fenestrata (= F. princeps), which is lecto- and epitypified. Fenestella mackenzei and F. ostryae are combined in Parafenestella. Asexual morphs of Cucurbitariaceae, where known, are all pyrenochaeta- or phoma-like. Comparison of the phylogenetic analyses of the ITS-LSU and combined matrices demonstrate that at least rpb2 sequences should be added whenever possible to improve phylogenetic resolution of the tree backbone; in addition, the tef1 introns should be added as well to improve delimitation of closely related species.

4.
Persoonia ; 41: 213-236, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30728606

RESUMO

Inocybe mixtilis constitutes a complex of species characterized by nodulose-angulose spores, absence of cortina and a more or less bulbous marginate stipe that is not darkening when desiccated. In order to elucidate species limits within the I. mixtilis complex, an ITS-RPB2 phylogeny was performed and interpreted using morphological and ecological characters. Six supported clades were obtained in our analyses that correspond to I. mixtilis, I. subtrivialis, and four new species to science: I. ceskae, I. johannis-stanglii, I. nothomixtilis and I. occulta. Species within this complex can be morphologically recognized through a unique combination of morphological characters, such as the spore shape, cystidial length and shape, presence and development of the velipellis and pileus colour and viscidity. Nevertheless, those characters overlap, especially among I. mixtilis, I. ceskae and I. occulta, and intermediate collections are therefore more reliably identified through ITS-sequencing. Two species, I. ceskae and I. occulta are present in both North America and Europe, while the rest are so far only known in Europe, or Europe and Asia (I. mixtilis). All species, except I. johannis-stanglii, seem to be able to establish ectomycorrhizal association both with conifers and angiosperms. Descriptions, colour illustrations and a key to all known species in the I. mixtilis group are provided.

5.
Persoonia ; 35: 148-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26823632

RESUMO

The genus Otidea is one of the more conspicuous members of the Pyronemataceae, with high species diversity in hemiboreal and boreal forests. The genus is morphologically coherent and in previous higher-level multi-gene analyses it formed a highly supported monophyletic group. Species delimitation within Otidea is controversial and much confusion has prevailed in the naming of taxa. To provide a phylogenetic hypothesis of Otidea, elucidate species diversity and limits we compiled a four-gene dataset including the nuclear LSU rDNA and three nuclear protein-coding genes (RPB1, RPB2 and EF-1α) for 89 specimens (total 4 877 nucleotides). These were selected from a larger sample of material studied using morphology and 146 ITS (ITS1-5.8S-ITS2) and 168 LSU rDNA sequences to represent the full genetic diversity. Using genealogical concordance phylogenetic species recognition (GCPSR), Bayesian and maximum likelihood analyses of the individual datasets resolved 25 species of Otidea. An additional eight singletons are considered to be distinct species, because they were genetically divergent from their sisters. Sequences of multiple genes were included from 13 holotypes, one neotype and three epitypes. Otidea angusta, O. myosotis and O. papillata f. pallidefurfuracea are nested within O. nannfeldtii, O. leporina and O. tuomikoskii, respectively and are considered synonyms. Otidea cantharella var. minor is shown to be a distinct species. Five new species were discovered: O. oregonensis and O. pseudoleporina for North America; and O. borealis, O. brunneoparva and O. subformicarum for Europe. The analyses of the individual four gene datasets yielded phylogenies that were highly concordant topologically, except for the RPB1 that showed supported conflict for some nodes in Bayesian analysis. Excluding the RPB1 from the combined analyses produced an identical topology to the four-gene phylogeny, but with higher support for several basal nodes and lower support for several shallow nodes. We argue to use the three-gene dataset to retrieve the maximum support for the higher-level relationships in Otidea, but still utilise the signal from the RPB1 for the delimitation and relationships of closely related species. From the four gene regions utilised, EF-1α and RPB1 have the strongest species recognition power, and with higher amplification success EF-1α may serve as the best secondary barcoding locus for Otidea (with ITS being a primary). The phylogeny from the three- and four-gene datasets is fully resolved and strongly supported in all branches but one. Two major clades, as part of six inclusive clades A-F, are identified - and ten subclades within these: A) O. platyspora and O. alutacea subclades, and B) O. papillata, O. leporina, O. tuomikoskii, O. cantharella, O. formicarum, O. unicisa, O. bufonia-onotica and O. concinna subclades. Morphological features in Otidea appear to be fast evolving and prone to shifts, and are poor indicators of higher-level relationships. Nevertheless, a conspicuous spore ornament is a synapomorphy for the O. unicisa subclade (/Otideopsis); all other species in Otidea have smooth or verruculose (in SEM) spores. Exclusively pale to bright yellow apothecia and straight to curved, broadly clavate to distinctly capitate paraphyses are synapomorphies for a restricted O. concinna subclade (/Flavoscypha). The curved to hooked apices of the paraphyses is suggested to be a symplesiomorphic trait for the genus. The reaction of resinous exudates on the outermost excipular cells that coalesce into amber drops in Melzer's reagent is likely an ancestral state for clade B. We estimate that Otidea consists of 47 species worldwide, based on all available information (including morphology, ITS or LSU sequences, and literature descriptions). Three fifths of the species occur in Europe, with 20 species recognised as endemic. At least 14 species occur in North America and 17 in Asia, with eight and ten species considered endemic to each continent, respectively. Our knowledge about Otidea in Asia is still fragmentary and the diversity likely much higher.

6.
Persoonia ; 35: 166-229, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26823633

RESUMO

The easily recognised genus Otidea is subjected to numerous problems in species identification. A number of old names have undergone various interpretations, materials from different continents have not been compared and misidentifications occur commonly. In this context, Otidea is monographed, based on our multiple gene phylogenies assessing species boundaries and comparative morphological characters (see Hansen & Olariaga 2015). All names combined in or synonymised with Otidea are dealt with. Thirty-three species are treated, with full descriptions and colour illustrations provided for 25 of these. Five new species are described, viz. O. borealis, O. brunneoparva, O. oregonensis, O. pseudoleporina and O. subformicarum. Otidea cantharella var. minor and O. onotica var. brevispora are elevated to species rank. Otideopsis kaushalii is combined in the genus Otidea. A key to the species of Otidea is given. An LSU dataset containing 167 sequences (with 44 newly generated in this study) is analysed to place collections and determine whether the named Otidea sequences in GenBank were identified correctly. Fourty-nine new ITS sequences were generated in this study. The ITS region is too variable to align across Otidea, but had low intraspecific variation and it aided in species identifications. Thirty type collections were studied, and ITS and LSU sequences are provided for 12 of these. A neotype is designated for O. cantharella and epitypes for O. concinna, O. leporina and O. onotica, along with several lectotypifications. The apothecial colour and shape, and spore characters are important for species identification. We conclude that to distinguish closely related or morphologically similar species, a combination of additional features are needed, i.e. the shape of the paraphyses, ectal excipulum structure, types of ectal excipulum resinous exudates and their reactions in Melzer's reagent and KOH, tomentum and basal mycelium colours and exudates. The KOH reaction of excipular resinous exudates and basal mycelium are introduced as novel taxonomic characters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...