Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 43(8): 1635-1638, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29652327

RESUMO

This Letter proposes a dual-reference digital holographic interferometer for analyzing the high refractive index encountered in transonic and supersonic flows. For that, a Wollaston prism is inserted in the reference arm in order to simultaneously generate two orthogonally polarized reference waves. As a consequence, recorded interferograms contain two crossed and perpendicular interference patterns that give two orders fully separated in the Fourier spectrum. It is then possible to analyze a transparent object regardless of the orientation of the refractive index gradient using the two phase maps reconstructed with each of the two first interference orders. Fusion of the phase maps yields a single phase map in which the phase singularities are removed. Experimental results demonstrate the suitability of the proposed approach for analyzing shock waves in the unsteady wake flow around a circular cylinder at Mach 0.75.

2.
Opt Lett ; 42(2): 322-325, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28081103

RESUMO

This Letter proposes a robust processing of phase dislocations to recover continuous phase maps. The approach is based on combined unwrapping and inpainting methods. Phase dislocations are determined using an estimator based on the second order phase gradient. The algorithm is validated using a realistic simulation of phase dislocations, and the phase restoration exhibits only weak errors. A comparison with other inpainting algorithms is also provided, demonstrating the suitability of the approach. The approach is applied to experimental data from off-axis digital holographic interferometry. The phase dislocation from phase data from a wake flow at Mach 0.73 are identified and processed. Excellent phase restoration can be appreciated.

3.
Opt Express ; 23(18): 23726-37, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26368468

RESUMO

This paper proposes quantitative phase imaging by using a high resolution holographic grating for generating a four-wave shearing interferogram. The high-resolution holographic grating is designed in a "kite" configuration so as to avoid parasitic mixing of diffraction orders. The selection of six diffraction orders in the Fourier spectrum of the interferogram allows reconstructing phase gradients along specific directions. The spectral analysis yields the useful parameters of the reconstruction process. The derivative axes are exactly determined whatever the experimental configurations of the holographic grating. The integration of the derivative yields the phase and the optical thickness. Demonstration of the proposed approach is carried out for the case of the analysis of the supersonic flow of a small vertical jet, 5.56mm in diameter. The experimental results compared with those obtained with digital holography exhibit a very good agreement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...