Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Surg Res ; 18(1): 807, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898818

RESUMO

BACKGROUND: Iliosacral screw placement is ubiquitous and now part of the surgeon's pelvic trauma armamentarium. More recent evidence supports sacroiliac arthrodesis for treating sacroiliac joint (SIJ) dysfunction in select patients. Regardless of the surgical indication, there are currently no studies examining lag screw compression biomechanics across the SIJ. The objective of this biomechanical investigation was to quantify iliosacral implant compressive loads and to examine the insertion torque and compressive load profile over time. METHODS: Eight human cadaveric pelvic specimens underwent SIJ fixation at S1 and S2 using 11.5 and 10.0 mm iFuse-TORQ Lag implants, respectively, and standard 7.3 mm trauma lag screws. Load decay analysis was performed, and insertion and removal torques were measured. RESULTS: For both implants at S1 and S2 levels, the load relaxed 50% in approximately 67 min. Compressive load decay was approximately 70% on average occurring approximately 15 h post-insertion. Average insertion torque for the 11.5 mm TORQ implant at S1 was significantly greater than the trauma lag screw. Similarly, at S2, insertion torque of the 10.0 mm TORQ implant was greater than the trauma lag screw. At S1, removal torque for the 11.5 mm TORQ implant was higher than the trauma lag screw; there was no significant difference in the removal torque at S2. CONCLUSIONS: In this study, we found that a novel posterior pelvic implant with a larger diameter, roughened surface, and dual pitch threads achieved improved insertion and removal torques compared to a standard screw. Load relaxation characteristics were similar between all implants.


Assuntos
Fixação Interna de Fraturas , Articulação Sacroilíaca , Humanos , Fenômenos Biomecânicos , Parafusos Ósseos , Cadáver , Sacro/cirurgia , Sacro/lesões
2.
Int J Spine Surg ; 17(4): 484-491, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37076254

RESUMO

BACKGROUND: The objective of this study was to assess the pullout force of a novel sharp-tipped screw developed for single-step, minimally invasive pedicle screw placement guided by neuronavigation compared with the pullout force for traditional screws. METHODS: A total of 60 human cadaveric lumbar pedicles were studied. Three different screw insertion techniques were compared: (A) Jamshidi needle and Kirschner wire without tapping; (B) Jamshidi needle and Kirschner wire with tapping; and (C) sharp-tipped screw insertion. Pullout tests were performed at a displacement rate of 10 mm/min recorded at 20 Hz. Mean values of these parameters were compared using paired t tests (left vs right in the same specimen): A vs B, A vs C, and B vs C. Additionally, 3 L1-L5 spine models were used for timing each screw insertion technique for a total of 10 screw insertions for each technique. Insertion times were compared using 1-way analysis of variance. RESULTS: The mean pullout force for insertion technique A was 1462.3 (597.5) N; for technique B, it was 1693.5 (805.0) N; and for technique C, it was 1319.0 (735.7) N. There was no statistically significant difference in pullout force between techniques (P > 0.08). The average insertion time for condition C was significantly less than that for conditions A and B (P < 0.001). CONCLUSIONS: The pullout force of the novel sharp-tipped screw placement technique is equivalent to that of traditional techniques. The sharp-tipped screw placement technique appears biomechanically viable and has the advantage of saving time during insertion. CLINICAL RELEVANCE: Single-step screw placement using high resolution 3-dimensional navigation has the potential to streamline workflow and reduce operative time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...