Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunol Invest ; 49(3): 264-286, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31429329

RESUMO

Homeostatic leukocyte trafficking into and within the female reproductive tract (FRT) contributes to fertility and reproductive health. It is unclear how this process is regulated in the anatomically distinct reproductive tissues, or whether the genes involved are affected by cyclical changes in reproductive hormones. In tissues such as skin and intestine, mouse studies have defined evolutionarily conserved molecular mechanisms for tissue-specific homing, interstitial positioning, and leukocyte egress. Chemokine family members are invariably involved, with the chemokine expression profile of a tissue regulating leukocyte content. Reproductive tissues (ovary, vagina, cervix, uterine horn) of 8 week old virgin female C57BL/6 mice (n = 20) were collected, and expression of mRNA for leukocyte markers and chemokines conducted by qPCR. Lymphocytic and myeloid cell populations within the uterus, cervix, bone marrow and PALN from virgin C57BL/6 mice were determined by flow cytometric analysis. Variation in leukocyte content between reproductive tissues is evident, with the uterus and cervix containing complex mixtures of lymphocytes and myeloid cells. Twenty-six chemokine genes are expressed in the FRT, many by several component tissues, some preferentially by one. Most striking are Xcl1 and Ccl28, which are restricted to the uterus. Ccl20 and genes encoding CXCR2 ligands are primarily transcribed in cervix and vagina. Ovary shows the lowest expression of most chemokine genes, with the notable exception of Ccl21 and Ccl27. We also identify eight chemokines in the vagina whose expression fluctuates substantially across the oestrous cycle. These data reveal complex chemokine networks within the FRT, and provide a framework for future studies of homeostatic leukocyte trafficking into and within these tissues.Abbreviations: BM: bone marrow; DC: dendritic cell; DN: double negative; FRT: female reproductive tract; FSC: forward scatter; NK: natural killer; PALN: para-aortic lymph node; SSC: side scatter; Tregs: regulatory T cells.


Assuntos
Quimiocinas/genética , Genitália Feminina/metabolismo , Animais , Ciclo Estral/imunologia , Feminino , Perfilação da Expressão Gênica , Genitália Feminina/citologia , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Especificidade de Órgãos/imunologia
2.
Immunol Cell Biol ; 93(2): 167-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25348934

RESUMO

Chemokine-directed leukocyte migration is a critical component of all innate and adaptive immune responses. The atypical chemokine receptor ACKR2 is expressed by lymphatic endothelial cells and scavenges pro-inflammatory CC chemokines to indirectly subdue leukocyte migration. This contributes to the resolution of acute inflammatory responses in vivo. ACKR2 is also universally expressed by innate-like B cells, suppressing their responsiveness to the non-ACKR2 ligand CXCL13, and controlling their distribution in vivo. The role of ACKR2 in autoimmunity remains relatively unexplored, although Ackr2 deficiency reportedly lessens the clinical symptoms of experimental autoimmune encephalomyelitis induced by immunization with encephalogenic peptide (MOG(35-55)). This was attributed to poor T-cell priming stemming from the defective departure of dendritic cells from the site of immunization. However, we report here that Ackr2-deficient mice, on two separate genetic backgrounds, are not less susceptible to autoimmunity induced by immunization, and in some cases develop enhanced clinical symptoms. Moreover, ACKR2 deficiency does not suppress T-cell priming in response to encephalogenic peptide (MOG(35-55)), and responses to protein antigen (collagen or MOG(1-125)) are characterized by elevated interleukin-17 production. Interestingly, after immunization with protein, but not peptide, antigen, Ackr2 deficiency was also associated with an increase in lymph node B cells expressing granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine that enhances T helper type 17 (Th17) cell development and survival. Thus, Ackr2 deficiency does not suppress autoreactive T-cell priming and autoimmune pathology, but can enhance T-cell polarization toward Th17 cells and increase the abundance of GM-CSF(+) B cells in lymph nodes draining the site of immunization.


Assuntos
Autoantígenos/imunologia , Colágeno/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Receptores de Quimiocinas/metabolismo , Células Th17/imunologia , Animais , Anticorpos/imunologia , Artrite Experimental/imunologia , Artrite Experimental/patologia , Encefalomielite Autoimune Experimental/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Imunidade , Imunização , Interleucina-17/biossíntese , Articulações/imunologia , Articulações/patologia , Linfonodos/metabolismo , Linfonodos/patologia , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/imunologia , Receptores de Quimiocinas/deficiência , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...