Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hosp Pharm ; 52(8): 570-573, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29276291

RESUMO

Objective: The objective of this study was to evaluate the stability of epinephrine hydrochloride in 0.9% sodium chloride in polyvinyl chloride bags for up to 60 days. Methods: Dilutions of epinephrine hydrochloride to concentrations of 16 and 64 µg/mL were performed under aseptic conditions. The bags were then placed into ultraviolet light-blocking bags and stored at room temperature (23°C-25°C) or under refrigeration (3°C-5°C). Three samples of each preparation and storage environment were analyzed on days 0, 30, 45, and 60. Physical stability was performed by visual examination. The pH was assessed at baseline and upon final degradation evaluation. Sterility of the samples was not assessed. Chemical stability of epinephrine hydrochloride was evaluated using high-performance liquid chromatography. To determine the stability-indicating nature of the assay, degradation 12 months following preparation was evaluated. Samples were considered stable if there was less than 10% degradation of the initial concentration. Results: Epinephrine hydrochloride diluted to 16 and 64 µg/mL with 0.9% sodium chloride injection and stored in amber ultraviolet light-blocking bags was physically stable throughout the study. No precipitation was observed. At days 30 and 45, all bags had less than 10% degradation. At day 60, all refrigerated bags had less than 10% degradation. Overall, the mean concentration of all measurements demonstrated less than 10% degradation at 60 days at room temperature and under refrigeration. Conclusion: Epinephrine hydrochloride diluted to 16 and 64 µg/mL with 0.9% sodium chloride injection in polyvinyl chloride bags stored in amber ultraviolet light-blocking bags was stable up to 45 days at room temperature and up to 60 days under refrigeration.

2.
Am J Health Syst Pharm ; 73(14): 1088-92, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27385703

RESUMO

PURPOSE: Results of a study to determine the 90-day stability of dronabinol capsules stored under various temperature conditions are reported. METHODS: High-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was used to assess the stability of dronabinol capsules (synthetic delta-9-tetrahydrocannabinol [Δ9-THC] mixed with high-grade sesame oil and other inactive ingredients and encapsulated as soft gelatin capsules) that were frozen, refrigerated, or kept at room temperature for three months. The dronabinol capsules remained in the original foil-sealed blister packs until preparation for HPLC-UV assessment. The primary endpoint was the percentage of the initial Δ9-THC concentration remaining at multiple designated time points. The secondary aim was to perform forced-degradation studies under acidic conditions to demonstrate that the HPLC-UV method used was stability indicating. RESULTS: The appearance of the dronabinol capsules remained unaltered during frozen, cold, or room-temperature storage. Regardless of storage condition, the percentage of the initial Δ9-THC content remaining was greater than 97% for all evaluated samples at all time points over the three-month study. These experimental data indicate that the product packaging and the sesame oil used to formulate dronabinol capsules efficiently protect Δ9-THC from oxidative degradation to cannabinol; this suggests that pharmacies can store dronabinol capsules in nonrefrigerated automated dispensing systems, with a capsule expiration date of 90 days after removal from the refrigerator. CONCLUSION: Dronabinol capsules may be stored at room temperature in their original packaging for up to three months without compromising capsule appearance and with minimal reduction in Δ9-THC concentration.


Assuntos
Temperatura Baixa , Dronabinol/análise , Embalagem de Medicamentos/normas , Estabilidade de Medicamentos , Congelamento , Cápsulas , Cromatografia Líquida de Alta Pressão/métodos , Dronabinol/normas , Humanos , Psicotrópicos/análise , Psicotrópicos/normas , Temperatura , Fatores de Tempo
3.
Int J Pharm Compd ; 20(6): 521-525, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28339392

RESUMO

The primary aim of this study was to investigate ribavirin solution for inhalation stability under three different conditions (frozen, refrigerated, room temperature) over a 45-day period. A ribavirin 6000-mg vial was reconstituted with 90 mL of Sterile Water for Injection per the package insert to yield a concentration of approximately 67 mg/mL. The solution was then placed in either syringes or empty glass vials and stored in the freezer (-20°C), in the refrigerator (~0°C to 4°C), or at room temperature (~20°C to 25°C). Original concentrations were measured on day 0 and subsequent concentrations were measured on day 2, 14, and 45 utilizing a validated liquid chromatography with tandem mass spectrometry assay. All analyses were performed in triplicate for each storage condition. Additionally, at each time point the physical stability was evaluated and the pH of solution was measured. The solution was considered stable if =90% of the original concentration was retained over the study period. A validated liquid chromatography with tandem mass spectrometry analysis demonstrated that >95% of the original ribavirin concentration was preserved over the 45-day period for all study conditions. The ribavirin concentration remained within the United States Pharmacopeia (USP)-required range of 95% to 105% of the original labeled product amount throughout the entire study period for all study conditions. Precipitation of ribavirin was noted during the thawing cycle for frozen samples, but the drug went back into solution once the thawing process was completed. No changes in color or turbidity were observed in any of the prepared solutions. Values for pH remained stable over the study period and ranged from 4.1 to 5.3. Ribavirin for inhalation solution is physically and chemically stable for at least 45 days when frozen, refrigerated, or kept at room temperature after reconstitution to a concentration of approximately 67 mg/mL and placed in syringes or glass vials.


Assuntos
Antivirais/administração & dosagem , Antivirais/química , Embalagem de Medicamentos , Vidro/química , Ribavirina/administração & dosagem , Ribavirina/química , Seringas , Administração por Inalação , Cromatografia de Fase Reversa , Temperatura Baixa , Composição de Medicamentos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Concentração de Íons de Hidrogênio , Soluções Farmacêuticas , Solubilidade , Espectrometria de Massas em Tandem , Fatores de Tempo
4.
Hosp Pharm ; 50(1): 34-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25684799

RESUMO

PURPOSE: To measure the effects associated with sequential implementation of electronic medication storage and inventory systems and product verification devices on pharmacy technical accuracy and rates of potential medication dispensing errors in an academic medical center. METHODS: During four 28-day periods of observation, pharmacists recorded all technical errors identified at the final visual check of pharmaceuticals prior to dispensing. Technical filling errors involving deviations from order-specific selection of product, dosage form, strength, or quantity were documented when dispensing medications using (a) a conventional unit dose (UD) drug distribution system, (b) an electronic storage and inventory system utilizing automated dispensing cabinets (ADCs) within the pharmacy, (c) ADCs combined with barcode (BC) verification, and (d) ADCs and BC verification utilized with changes in product labeling and individualized personnel training in systems application. RESULTS: Using a conventional UD system, the overall incidence of technical error was 0.157% (24/15,271). Following implementation of ADCs, the comparative overall incidence of technical error was 0.135% (10/7,379; P = .841). Following implementation of BC scanning, the comparative overall incidence of technical error was 0.137% (27/19,708; P = .729). Subsequent changes in product labeling and intensified staff training in the use of BC systems was associated with a decrease in the rate of technical error to 0.050% (13/26,200; P = .002). CONCLUSIONS: Pharmacy ADCs and BC systems provide complementary effects that improve technical accuracy and reduce the incidence of potential medication dispensing errors if this technology is used with comprehensive personnel training.

5.
Hosp Pharm ; 49(5): 455-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24958958

RESUMO

PURPOSE: Phenylephrine hydrochloride (HCl) is commonly used to maintain adequate blood pressure during shock and shocklike states. Phenylephrine is prepared in concentrated stock vials that require further dilution prior to administration. This study evaluated the physical and chemical stability of phenylephrine in extemporaneously prepared polyvinyl chloride (PVC) bags. METHODS: Phenylephrine HCl 10 mg/mL solution was diluted with 0.9% sodium chloride for injection to final concentrations of 200 µg/mL and 400 µg/mL and stored at room temperature (23°C-25°C) exposed to fluorescent light. Stability of phenylephrine HCl was evaluated by high-performance liquid chromatography on days 0, 7, 14, 21, 30, 45, and 60. RESULTS: Phenylephrine HCl 200 and 400 µg/mL solutions in PVC bags were physically stable during the entire 60-day study period. Phenylephrine HCl retained > 95% of the original concentration. CONCLUSION: Phenylephrine HCl diluted to 200 or 400 µg/mL with 0.9% sodium chloride for injection is both physically and chemically stable for a period of 60 days with ≤5% degradation when stored at room temperature and exposed to fluorescent lighting.

6.
Am J Health Syst Pharm ; 64(10): 1092-5, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17494910

RESUMO

PURPOSE: The stability of extemporaneously prepared phenylephrine hydrochloride injection stored in polypropylene syringes was studied. METHODS: Dilution of phenylephrine hydrochloride to a nominal concentration of 100 mug/mL was performed under aseptic conditions by adding 100 mg of phenylephrine hydrochloride (total of 10 mL from two 5-mL 10-mg/mL vials) to 1000 mL of 0.9% sodium chloride injection. The resulting solution was drawn into 10-mL polypropylene syringes and sealed with syringe caps. The syringes were then frozen (-20 degrees C), refrigerated (3-5 degrees C), or kept at room temperature (23-25 degrees C). Four samples of each preparation were analyzed on days 0, 7, 15, 21, and 30. Physical stability was assessed by visual examination. The pH of each syringe was also measured at each time point. Sterility of the samples was not assessed. Chemical stability of phenylephrine hydrochloride was evaluated using high-performance liquid chromatography. To demonstrate the stability-indicating nature of the assay, forced degradation of phenylephrine was conducted. Samples were considered stable if there was less than 10% degradation of the initial concentration. RESULTS: Phenylephrine hydrochloride diluted to 100 microg/mL with 0.9% sodium chloride injection was physically stable throughout the study. No precipitation was observed. Minimal to no degradation was observed over the 30-day study period. CONCLUSION: Phenylephrine hydrochloride diluted to a concentration of 100 mug/mL in 0.9% sodium chloride injection was stable for at least 30 days when stored in polypropylene syringes at -20 degrees C, 3-5 degrees C, and 23-25 degrees C.


Assuntos
Fenilefrina/química , Polipropilenos , Simpatomiméticos/química , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Seringas , Temperatura
7.
Am J Health Syst Pharm ; 64(7): 762-6, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17384363

RESUMO

PURPOSE: The physical and chemical stability of repackaged acetylcysteine 600 mg/3 mL solution in oral syringes stored under refrigeration or at room temperature was studied for six months; a cost analysis was also conducted. METHODS: Acetylcysteine 20% solution for inhalation was repackaged undiluted as 600 mg/3 mL in capped oral syringes and stored either under refrigeration or at room temperature exposed to fluorescent light. Four samples for each storage condition were analyzed in duplicate on day zero, weekly for the first month, and then every two weeks during months 2-6. Physical stability was assessed, and the chemical stability of acetylcysteine was evaluated by high-performance liquid chromatography. RESULTS: Acetylcysteine solution in syringes was physically stable during the entire six-month study period. When stored at room temperature, acetylcysteine retained 99% of the original concentration at three months and 95% at six months after preparation of the syringes. Loss of acetylcysteine was <2% at six months when stored under refrigeration. Packaging acetylcysteine in batches of 100 syringes instead of preparing individual syringes reduced wastage to zero syringes, saving an estimated $247 in drug costs. The estimated pharmacy time savings was 30 hours ($702). CONCLUSION: Acetylcysteine 20% solution repackaged as 600 mg/3 mL in oral syringes is both physically and chemically stable under refrigeration or at room temperature under normal fluorescent lighting for six months. The total loss of acetylcysteine was approximately 5% at room temperature under fluorescent lighting and <2% under refrigeration. Repackaging the solution in syringes in bulk rather than in single doses demonstrated a measurable cost saving.


Assuntos
Acetilcisteína/economia , Embalagem de Medicamentos , Expectorantes/economia , Seringas , Acetilcisteína/administração & dosagem , Administração Oral , Cromatografia Líquida , Controle de Custos , Estabilidade de Medicamentos , Armazenamento de Medicamentos/métodos , Expectorantes/administração & dosagem , Temperatura , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...