Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 11(9): 2558-67, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409145

RESUMO

The sequence-specific fluorescence labeling of nucleic acids is a prerequisite for various methods including single-molecule Förster resonance energy transfer (smFRET) for the detailed study of nucleic acid folding and function. Such nucleic acid derivatives are commonly obtained by solid-phase methods; however, yields decrease rapidly with increasing length and restrict the practicability of this approach for long strands. Here, we report a new labeling strategy for the postsynthetic incorporation of a bioorthogonal group into single stranded regions of both DNA and RNA of unrestricted length. A 12-alkyne-etheno-adenine modification is sequence-selectively formed using DNA-templated synthesis, followed by conjugation of the fluorophore Cy3 via a copper-catalyzed azide-alkyne cycloaddition (CuAAC). Evaluation of the labeled strands in smFRET measurements shows that the strategy developed here has the potential to be used for the study of long functional nucleic acids by (single-molecule) fluorescence or other methods. To prove the universal use of the method, its application was successfully extended to the labeling of a short RNA single strand. As a proof-of-concept, also the labeling of a large RNA molecule in form of a 633 nucleotide long construct derived from the Saccharomyces cerevisiae group II intron Sc.ai5γ was performed, and covalent attachment of the Cy3 fluorophore was shown with gel electrophoresis.


Assuntos
Oligonucleotídeos/química , Fluorescência
2.
ACS Cent Sci ; 2(6): 394-400, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27413783

RESUMO

Nucleic acid templated reactions are enabled by the hybridization of probe-reagent conjugates resulting in high effective reagent concentration and fast chemical transformation. We have developed a reaction that harnesses cellular microRNA (miRNA) to yield the cleavage of a linker releasing fluorogenic rhodamine in a live vertebrate. The reaction is based on the catalytic photoreduction of an azide by a ruthenium complex. We showed that this system reports specific expression of miRNA in living tissues of a vertebrate.

3.
ACS Chem Biol ; 10(2): 547-53, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25402665

RESUMO

DNA lesions such as 1,N(6)-ethenoadenine (εA) and 3,N(4)-ethenocytosine (εC) are ubiquitously present in genomes of different organisms and show increasing levels upon exposure to mutagenic substances or under conditions of chronic inflammations and infections. To facilitate investigations of the mutagenic properties and repair mechanisms of etheno-base adducts, access to oligonucleotides bearing these lesions at defined positions is of great advantage. In this study, we report a new synthetic strategy to sequence-specifically generate etheno-adducts in a single-stranded unmodified DNA sequence making use of a DNA-templated approach that positions the alkylating agent close in space to the respective target base. In contrast to solid-phase synthesis of modified oligonucleotides such DNA-templated methods can be applied to single-stranded nucleic acids of unrestricted lengths. The modular nature of the system allows straightforward adaptation to different sequences.


Assuntos
Adenina/análogos & derivados , Citosina/análogos & derivados , DNA de Cadeia Simples/metabolismo , Adenina/química , Adenina/metabolismo , Sequência de Bases , Citosina/química , Citosina/metabolismo , Dano ao DNA , DNA de Cadeia Simples/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...