Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662264

RESUMO

Primarily undergraduate institutions (PUIs) often struggle to provide authentic research opportunities that culminate in peer-reviewed publications due to "recipe-driven" lab courses and the comprehensive body of work necessary for traditional scientific publication. However, the advent of short-form, single-figure "micropublications" has created novel opportunities for early-career scientists to make and publish authentic scientific contributions on a scale and in a timespan compatible with their training periods. The purpose of this qualitative case study is to explore the benefits accrued by eight undergraduate and master's students who participated in authentic, small-scale research projects and disseminated their work as coauthors of peer-reviewed micropublications at a PUI. In these interviews, students reported that through the process of conducting and publishing their research, they developed specific competencies: reading scientific literature, proposing experiments, and collecting/interpreting publication-worthy data. Further, they reported this process enabled them to identify as contributing members of the greater scientific community.

2.
J Biol Chem ; 299(8): 104939, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331602

RESUMO

The relationship between lipid homeostasis and protein homeostasis (proteostasis) is complex and remains incompletely understood. We conducted a screen for genes required for efficient degradation of Deg1-Sec62, a model aberrant translocon-associated substrate of the endoplasmic reticulum (ER) ubiquitin ligase Hrd1, in Saccharomyces cerevisiae. This screen revealed that INO4 is required for efficient Deg1-Sec62 degradation. INO4 encodes one subunit of the Ino2/Ino4 heterodimeric transcription factor, which regulates expression of genes required for lipid biosynthesis. Deg1-Sec62 degradation was also impaired by mutation of genes encoding several enzymes mediating phospholipid and sterol biosynthesis. The degradation defect in ino4Δ yeast was rescued by supplementation with metabolites whose synthesis and uptake are mediated by Ino2/Ino4 targets. Stabilization of a panel of substrates of the Hrd1 and Doa10 ER ubiquitin ligases by INO4 deletion indicates ER protein quality control is generally sensitive to perturbed lipid homeostasis. Loss of INO4 sensitized yeast to proteotoxic stress, suggesting a broad requirement for lipid homeostasis in maintaining proteostasis. A better understanding of the dynamic relationship between lipid homeostasis and proteostasis may lead to improved understanding and treatment of several human diseases associated with altered lipid biosynthesis.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Lipídeos , Proteínas de Saccharomyces cerevisiae , Anti-Infecciosos/farmacologia , Farmacorresistência Fúngica/genética , Degradação Associada com o Retículo Endoplasmático/genética , Higromicina B/farmacologia , Lipídeos/biossíntese , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
MicroPubl Biol ; 20212021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34095778

RESUMO

The heterotrimeric Asi ubiquitin ligase (encoded by ASI1, ASI2, and ASI3) mediates protein degradation in the inner nuclear membrane in Saccharomyces cerevisiae. Asi1p and Asi3p possess catalytic domains, while Asi2p functions as an adaptor for a subset of Asi substrates. We hypothesized the Asi complex is an important mediator of protein quality control, and we predicted that Asi would be required for optimal growth in conditions associated with elevated abundance of aberrant proteins. Loss of Asi1p or Asi3p, but not Asi2p, sensitized yeast to hygromycin B, which promotes translational infidelity by distorting the ribosome A site. Surprisingly, loss of quality control ubiquitin ligase Hul5p did not sensitize yeast to hygromycin B. Our results are consistent with a prominent role for an Asi subcomplex that includes Asi1p and Asi3p (but not Asi2p) in protein quality control.

4.
Fine Focus ; 6(1): 76-83, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33554225

RESUMO

Ubr1 is a conserved ubiquitin ligase involved in the degradation of aberrant proteins in eukaryotic cells. The human enzyme is found mutated in patients with Johanson-Blizzard syndrome. We hypothesized that Ubr1 is necessary for optimal cellular fitness in conditions associated with elevated abundance of aberrant and misfolded proteins. Indeed, we found that loss of Ubr1 in the model eukaryotic microorganism Saccharomyces cerevisiae strongly sensitizes cells to hygromycin B, which reduces translational fidelity by causing ribosome A site distortion. Our results are consistent with a prominent role for Ubr1 in protein quality control. We speculate that disease manifestations in patients with Johanson-Blizzard syndrome are linked, at least in part, to defects in protein quality control caused by loss of Ubr1 function.

5.
Beilstein J Org Chem ; 2: 13, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16813651

RESUMO

BACKGROUND: Tumor promoters enhance tumor yield in experimental animals without directly affecting the DNA of the cell. Promoters may play a role in the development of cancer, as humans are exposed to them in the environment. In work based on computer-assisted microscopy and sophisticated classification methods, we showed that cells could be classified by reference to a database of known normal and cancerous cell phenotypes. Promoters caused loss of properties specific to normal cells and gain of properties of cancer cells. Other compounds, including colchicine, had a similar effect. Colchicine given together with paclitaxel, however, caused cells to adopt properties of normal cells. This provided a rationale for tests of microtubule inhibitor combinations in cancer patients. The combination of a depolymerizing and a stabilizing agent is a superior anti-tumor treatment. The biological basis of the effect is not understood. RESULTS: A single compound containing both colchicine and paclitaxel structures was synthesized. Colchicine is an alkaloid with a trimethoxyphenyl ring (ring A), a ring with an acetamide linkage (ring B), and a tropolone ring (ring C). Although rings A and C are important for tubulin-binding activity, the acetamide linkage on ring B could be replaced by an amide containing a glutamate linker. Alteration of the C-7 site on paclitaxel similarly had little or no inhibitory effect on its biological activity. The linker was attached to this position. The coupled compound, colchitaxel (1), had some of the same effects on microtubules as the combination of starting compounds. It also caused shortening and fragmentation of the + end protein cap. CONCLUSION: Since microtubule inhibitor combinations give results unlike those obtained with either inhibitor alone, it is important to determine how such combinations affect cell shape and growth. Colchitaxel shows a subset of the effects of the inhibitor combination. Thus, it may be able to bind the relevant cellular target of the combination. It will be useful to determine the basis of the shape reversal effect and possibly, the reasons for therapeutic efficacy of microtubule inhibitor combinations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...