Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(35): 24244-24249, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39167697

RESUMO

Molecular hinges are ubiquitous in both natural and artificial supramolecular systems. A major challenge to date, however, has been simultaneously achieving high thermodynamic and kinetic stability. Here, we employ host-enhanced intramolecular charge-transfer interactions to mediate entropy-favored complexation between a flexible AB2-type guest and a macrocyclic host, forming a new type of molecular hinge with an ultrahigh picomolar binding affinity (Ka > 1012 M-1). This entropy-promoted hinge modulates photoisomerization, exhibiting a substantial preference for the E-isomer, which is further demonstrated to mirror the natural retinal-opsin cycle, promoting the sensitization of visible light. This work unveils an efficient approach to exploit entropy-dominant architectures for the design of hierarchical molecular systems.

2.
Chem Sci ; 13(30): 8791-8796, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35975157

RESUMO

Extended polymeric structures based on redox-active species are of great interest in emerging technologies related to energy conversion and storage. However, redox-active monomers tend to inhibit radical polymerisation processes and hence, increase polydispersity and reduce the average molecular weight of the resultant polymers. Here, we demonstrate that styrenic viologens, which do not undergo radical polymerisation effectively on their own, can be readily copolymerised in the presence of cucurbit[n]uril (CB[n]) macrocycles. The presented strategy relies on pre-encapsulation of the viologen monomers within the molecular cavities of the CB[n] macrocycle. Upon polymerisation, the molecular weight of the resultant polymer was found to be an order of magnitude higher and the polydispersity reduced 5-fold. The mechanism responsible for this enhancement was unveiled through comprehensive spectroscopic and electrochemical studies. A combination of solubilisation/stabilisation of reduced viologen species as well as protection of the parent viologens against reduction gives rise to the higher molar masses and reduced polydispersities. The presented study highlights the potential of CB[n]-based host-guest chemistry to control both the redox behavior of monomers as well as the kinetics of their radical polymerisation, which will open up new opportunities across myriad fields.

3.
Nanoscale Adv ; 5(1): 81-87, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36605806

RESUMO

Gold nanoparticles (AuNPs), owing to their intrinsic plasmonic properties, are widely used in applications ranging from nanotechnology and nanomedicine to catalysis and bioimaging. Capitalising on the ability of AuNPs to generate nanoscale heat upon optical excitation, we designed a nanobiocatalyst with enhanced cryophilic properties. It consists of gold nanoparticles and enzyme molecules, co-immobilised onto a silica scaffold, and shielded within a nanometre-thin organosilica layer. To produce such a hybrid system, we developed and optimized a synthetic method allowing efficient AuNP covalent immobilisation on the surface of silica particles (SPs). Our procedure allows to reach a dense and homogeneous AuNP surface coverage. After enzyme co-immobilisation, a nanometre-thin organosilica layer was grown on the surface of the SPs. This layer was designed to fulfil the dual function of protecting the enzyme from the surrounding environment and allowing the confinement, at the nanometre scale, of the heat diffusing from the AuNPs after surface plasmon resonance photothermal activation. To establish this proof of concept, we used an industrially relevant lipase enzyme, namely Lipase B from Candida Antarctica (CalB). Herein, we demonstrate the possibility to photothermally activate the so-engineered enzymes at temperatures as low as -10 °C.

4.
Chem Commun (Camb) ; 57(90): 11960-11963, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34705002

RESUMO

We report a method of glycosylated enzymes' surface immobilisation and stabilisation. The enzyme is immobilised at the surface of silica nanoparticles through the reversible covalent binding of vicinal diols of the enzyme glycans with a surface-attached boronate derivative. A soft organosilica layer of controlled thickness is grown at the silica surface, entrapping the enzyme and thus avoiding enzyme leaching. We demonstrate that this approach results not only in high and durable activity retention but also enzyme stabilisation.

5.
Chem Sci ; 10(38): 8806-8811, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31803453

RESUMO

Cucurbit[8]uril (CB[8]) mediated assembly of extended aryl viologens (EVs) into optically tunable dimers is reported for the first time. We show that the modular design and synthesis of a new class of π-conjugated viologen derivatives with rigid aromatic or heteroaromatic bridging units as well as electron donating molecular recognition motifs enable their self-assembly into 2 : 2 complexes with CB[8]. The quantitative dimerization process involving these two molecular components in an aqueous solution enables excimer-like interactions between closely packed charged guests giving rise to distinct spectroscopic behavior. The nature of these dimers (CB[8]2·(EV[X]R)2) in the ground and excited states was characterized by NMR, isothermal titration calorimetry, and steady-state spectroscopic measurements.

6.
Chem Commun (Camb) ; 55(51): 7354-7357, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31172153

RESUMO

A pentapeptide sequence was functionalized with an asymmetric arylated methyl-viologen (AVI3D2) and through controllable ß-sheet self-assembly, conductive nanofibers were formed. Using a combination of spectroscopic techniques and conductive atomic force microscopy, we investigated the molecular conformation of the resultant AVI3D2 fibers and how their conductivity is affected by ß-sheet self-assembly. These conductive nanofibers have potential for future exploration as molecular wires in optoelectronic applications.

7.
Chem Sci ; 11(3): 812-825, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34123057

RESUMO

A modular strategy has been employed to develop a new class of fluorescent molecules, which generates discrete, dimeric stacked fluorophores upon complexation with multiple cucurbit[8]uril macrocycles. The multiple constraints result in a "static" complex (remaining as a single entity for more than 30 ms) and facilitate fluorophore coupling in the ground state, showing a significant bathochromic shift in absorption and emission. This modular design is surprisingly applicable and flexible and has been validated through an investigation of nine different fluorophore cores ranging in size, shape, and geometric variation of their clamping modules. All fluorescent dimers evaluated can be photo-excited to atypical excimer-like states with elongated excited lifetimes (up to 37 ns) and substantially high quantum yields (up to 1). This strategy offers a straightforward preparation of discrete fluorophore dimers, providing promising model systems with explicitly stable dimeric structures and tunable photophysical features, which can be utilized to study various intermolecular processes.

8.
Chemistry ; 23(36): 8601-8604, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28339123

RESUMO

Supramolecular chemistry utilizing the macrocyclic hosts cyclodextrins (CDs) and cucurbit[n]urils (CB[n]s) is traditionally performed in aqueous media; however, their solubility is typically poor, especially for the family of CB[n]s. Through derivatization of these macrocycles their solubility can be augmented to enable enhanced solubility in water and in some organic solvents. The increase in solubility of these derivatized macrocycles allows for their use in a wider range of chemical environments and giving rise to myriad potential applications. The dissolution of parent CDs (α-, ß- and γ-) and CB[n]s (n=6-8) in deep eutectic solvents (DES) is reported, showing dramatic enhanced solubility of the larger species in both families, CB[7] and CB[8] as well as ß- and γ-CD, respectively. Furthermore, the host-guest properties are maintained in this new solvation medium.

9.
J Am Chem Soc ; 139(8): 3202-3208, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28198190

RESUMO

A 1:1 binding stoichiometry of a host-guest complex need not consist of a single host and guest. Diarylviologens containing electron-donating substituents complexed with cucurbit[8]uril (CB[8]) in a 1:1 stoichiometry exhibit abnormally large binding enthalpies compared to typical enthalpy changes observed for 1:1 binary complexes. Here, several CB[8]-mediated host-guest complexes, which were previously reported as 1:1 binary complexes, are verified to be 2:2 quaternary complexes by a combination of isothermal titration calorimetry, 1H, NOESY, and ROESY NMR, and ion mobility mass spectrometry, clearly indicating a binding motif of two partially overlapping diarylviologens held in place with two CB[8] molecules. Formation of 2:2 quaternary complexes is favored by electron-donating substituents, while electron-withdrawing substituents typically result in 1:1 binary complexes. The stacking of two highly conjugated diarylviologens in one quaternary motif affords the complexes enhanced conductance when considered as a single-molecular conductor. Moreover, an additional conducting signal previously observed for this "supramolecular" conductor can be readily understood with our 2:2 complexation model, corresponding to a parallel conductance pathway. Therefore, a 2:2 quaternary complex model grants a greater understanding of such supramolecular complexes, enabling the design of engineered, hierarchical structures and functional materials.

10.
Chemistry ; 21(28): 10082-8, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26037593

RESUMO

Understanding how the spatial ordering of liquid crystalline nanoparticles can be controlled by different factors is of great importance in the further development of their photonic applications. In this paper, we report a new key parameter to control the mesogenic behavior of gold nanoparticles modified by rodlike thiols. An efficient method to control the spatial arrangement of hybrid nanoparticles in a condensed state is developed by changing the composition of the mesogenic grafting layer on the surface of the nanoparticles. The composition can be tuned by different conditions of the ligand exchange reaction. The thermal and optical behavior of the mesogenic and promesogenic ligands were investigated by using differential scanning calorimetry (DSC) and hot-stage polarized optical microscopy. The chemical structure of the synthesized hybrid nanoparticles was characterized by (1) H NMR spectroscopy, thermogravimetric analysis (TGA), XPS, and elemental analysis, whereas the superstructures were examined by small-angle X-ray diffraction (SAXSRD) analysis. Structural studies showed that the organic sublayer made of mesogenic ligands is denser with an increasing the average ligand number, thereby separating the nanoparticles in the liquid crystalline phases, which changes the parameters of these phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA