Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Mol Biol ; 436(4): 168380, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061626

RESUMO

Viral infections pose a significant health risk worldwide. There is a pressing need for more effective antiviral drugs to combat emerging novel viruses and the reemergence of previously controlled viruses. Biomolecular condensates are crucial for viral replication and are promising targets for novel antiviral therapies. Herein, we review the role of biomolecular condensates in the viral replication cycle and discuss novel strategies to leverage condensate biology for antiviral drug discovery. Biomolecular condensates may also provide an opportunity to develop antivirals that are broad-spectrum or less prone to acquired drug resistance.


Assuntos
Antivirais , Condensados Biomoleculares , Viroses , Replicação Viral , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Condensados Biomoleculares/efeitos dos fármacos , Viroses/tratamento farmacológico , Viroses/virologia , Replicação Viral/efeitos dos fármacos , Descoberta de Drogas
2.
mBio ; 14(1): e0338222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36622146

RESUMO

Human immunodeficiency virus type 1 (HIV-1) Nef hijacks the clathrin adaptor complex 2 (AP-2) to downregulate the viral receptor CD4 and the antiviral multipass transmembrane proteins SERINC3 and SERINC5, which inhibit the infectivity of progeny virions when incorporated. In Jurkat Tag T lymphoid cells lacking SERINC3 and SERINC5, Nef is no longer required for full progeny virus infectivity and for efficient viral replication. However, in MOLT-3 T lymphoid cells, HIV-1 replication remains highly dependent on Nef even in the absence of SERINC3 and SERINC5. Using a knockout (KO) approach, we now show that the Nef-mediated enhancement of HIV-1 replication in MOLT-3 cells does not depend on the Nef-interacting kinases LCK and PAK2. Furthermore, Nef substantially enhanced HIV-1 replication even in triple-KO MOLT-3 cells that simultaneously lacked the three Nef/AP-2 targets, SERINC3, SERINC5, and CD4, and were reconstituted with a Nef-resistant CD4 to permit HIV-1 entry. Nevertheless, the ability of Nef mutants to promote HIV-1 replication in the triple-KO cells correlated strictly with the ability to bind AP-2. In addition, knockdown and reconstitution experiments confirmed the involvement of AP-2. These observations raise the possibility that MOLT-3 cells express a novel antiviral factor that is downregulated by Nef in an AP-2-dependent manner. IMPORTANCE The HIV-1 Nef protein hijacks a component of the cellular endocytic machinery called AP-2 to downregulate the viral receptor CD4 and the antiviral cellular membrane proteins SERINC3 and SERINC5. In the absence of Nef, SERINC3 and SERINC5 are taken up into viral particles, which reduces their infectivity. Surprisingly, in a T cell line called MOLT-3, Nef remains crucial for HIV-1 spreading in the absence of SERINC3 and SERINC5. We now show that this effect of Nef also does not depend on the cellular signaling molecules and Nef interaction partners LCK and PAK2. Nef was required for efficient HIV-1 spreading even in triple-knockout cells that completely lacked Nef/AP-2-sensitive CD4, in addition to the Nef/AP-2 targets SERINC3 and SERINC5. Nevertheless, our results indicate that the enhancement of HIV-1 spreading by Nef in the triple-knockout cells remained AP-2 dependent, which suggests the presence of an unknown antiviral factor that is sensitive to Nef/AP-2-mediated downregulation.


Assuntos
HIV-1 , Humanos , Antivirais/farmacologia , Antígenos CD4 , Linhagem Celular , Glicoproteínas de Membrana , Proteínas de Membrana/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Replicação Viral
3.
Sci Adv ; 7(44): eabj7398, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34714669

RESUMO

BST2 is an interferon-inducible antiviral host protein antagonized by HIV-1 Vpu that entraps nascent HIV-1 virions on the cell surface. Unexpectedly, we find that HIV-1 lacking Nef can revert to full replication competence simply by losing the ability to antagonize BST2. Using gene editing together with cell sorting, we demonstrate that even the propagation of wild-type HIV-1 is strikingly dependent on BST2, including in primary human cells. HIV-1 propagation in BST2−/− populations can be fully rescued by exogenous BST2 irrespective of its capacity to signal and even by an artificial BST2-like protein that shares its virion entrapment activity but lacks sequence homology. Counterintuitively, our results reveal that HIV-1 propagation is critically dependent on basal levels of virion tethering by a key component of innate antiviral immunity.

4.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511376

RESUMO

The HIV-1 Gag matrix (MA) domain mediates the localization of Gag to the plasma membrane (PM), the site for infectious virion assembly. The MA highly basic region (MA-HBR) interacts with phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], a PM-specific acidic lipid. The MA-HBR also binds RNAs. To test whether acidic lipids alone determine PM-specific localization of Gag or whether MA-RNA binding also plays a role, we compared a panel of MA-HBR mutants that contain two types of substitutions at MA residues 25 and 26 or residues 29 and 31: Lys→Arg (KR) (25/26KR and 29/31KR) and Lys→Thr (KT) (25/26KT and 29/31KT). Consistent with the importance of the HBR charge in RNA binding, both KT mutants failed to bind RNA via MA efficiently, unlike the corresponding KR mutants. Both 25/26KT Gag-yellow fluorescent protein (YFP) and 29/31KT Gag-YFP bound nonspecifically to the PM and intracellular membranes, presumably via the myristoyl moiety and remaining MA basic residues. In contrast, 25/26KR Gag-YFP bound specifically to the PM, suggesting a role for the total positive charge and/or MA-bound RNA in navigating Gag to the PM. Unlike 29/31KT Gag-YFP, 29/31KR Gag-YFP was predominantly cytosolic and showed little intracellular membrane binding despite having a higher HBR charge. Therefore, it is likely that MA-RNA binding blocks promiscuous Gag membrane binding in cells. Notably, the introduction of a heterologous multimerization domain restored PI(4,5)P2-dependent PM-specific localization for 29/31KR Gag-YFP, suggesting that the blocking of PM binding is more readily reversed than that of intracellular membrane binding. Altogether, these cell-based data support a model in which MA-RNA binding ensures PM-specific localization of Gag via suppression of nonspecific membrane binding.IMPORTANCE The PM-specific localization of HIV-1 Gag is a crucial early step in infectious progeny production. The interaction between the MA highly basic region (MA-HBR) of Gag and the PM-specific lipid PI(4,5)P2 is critical for Gag localization to the PM. Additionally, in vitro evidence has indicated that MA-RNA binding prevents nonspecific binding of Gag to non-PI(4,5)P2-containing membranes. However, cell-based evidence supporting a role for HIV-1 MA-RNA binding in PM-specific subcellular localization has been scarce; thus, it remained possible that in cells, just the high basic charge or the PI(4,5)P2 binding ability is sufficient for MA to direct Gag specifically to the PM. The present study reveals for the first time an excellent correlation between RNA binding of the MA-HBR and inhibition of promiscuous Gag localization, both within the cells, and thereby provides cell-based evidence supporting a mechanism in which HIV-1 MA binding to RNA ensures the specific localization of Gag to the PM.


Assuntos
HIV-1/metabolismo , Membranas Intracelulares/metabolismo , RNA/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Membrana Celular/metabolismo , HIV-1/genética , Células HeLa , Humanos , Lipídeos , Modelos Moleculares , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Montagem de Vírus/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
5.
mBio ; 10(3)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186327

RESUMO

It has recently emerged that HIV-1 Nef counteracts the antiviral host proteins SERINC3 and SERINC5. In particular, SERINC5 inhibits the infectivity of progeny virions when incorporated. SERINC3 and SERINC5 are also counteracted by the unrelated murine leukemia virus glycosylated Gag (glycoGag) protein, which possesses a potent Nef-like activity on HIV-1 infectivity. We now report that a minimal glycoGag termed glycoMA can fully substitute for Nef in promoting HIV-1 replication in Jurkat T lymphoid cells, indicating that Nef enhances replication in these cells mainly by counteracting SERINCs. In contrast, the SERINC antagonist glycoMA was unable to substitute for Nef in MOLT-3 T lymphoid cells, in which HIV-1 replication was highly dependent on Nef, and remained so even in the absence of SERINC3 and SERINC5. As in MOLT-3 cells, glycoMA was unable to substitute for Nef in stimulating HIV-1 replication in primary human cells. Although the ability of Nef mutants to promote HIV-1 replication in MOLT-3 cells correlated with the ability to engage endocytic machinery and to downregulate CD4, Nef nevertheless rescued virus replication under conditions where CD4 downregulation did not occur. Taken together, our observations raise the possibility that Nef triggers the endocytosis of a novel antiviral factor that is active against both laboratory-adapted and primary HIV-1 strains.IMPORTANCE The Nef protein of HIV-1 and the unrelated glycoGag protein of a murine leukemia virus similarly prevent the uptake of antiviral host proteins called SERINC3 and SERINC5 into HIV-1 particles, which enhances their infectiousness. We now show that although both SERINC antagonists can in principle similarly enhance HIV-1 replication, glycoGag is unable to substitute for Nef in primary human cells and in a T cell line called MOLT-3. In MOLT-3 cells, Nef remained crucial for HIV-1 replication even in the absence of SERINC3 and SERINC5. The pronounced effect of Nef on HIV-1 spreading in MOLT-3 cells correlated with the ability of Nef to engage cellular endocytic machinery and to downregulate the HIV-1 receptor CD4 but nevertheless persisted in the absence of CD4 downregulation. Collectively, our results provide evidence for a potent novel restriction activity that affects even relatively SERINC-resistant HIV-1 isolates and is counteracted by Nef.


Assuntos
HIV-1/genética , HIV-1/fisiologia , Glicoproteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Replicação Viral/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Antígenos CD4/genética , Linhagem Celular , Endocitose , Glicosilação , Interações Hospedeiro-Patógeno , Humanos , Células Jurkat , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
6.
J Vis Exp ; (113)2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27500610

RESUMO

The structural protein of HIV-1, Pr55(Gag) (or Gag), binds to the plasma membrane in cells during the virus assembly process. Membrane binding of Gag is an essential step for virus particle formation, since a defect in Gag membrane binding results in severe impairment of viral particle production. To gain mechanistic details of Gag-lipid membrane interactions, in vitro methods based on NMR, protein footprinting, surface plasmon resonance, liposome flotation centrifugation, or fluorescence lipid bead binding have been developed thus far. However, each of these in vitro methods has its limitations. To overcome some of these limitations and provide a complementary approach to the previously established methods, we developed an in vitro assay in which interactions between HIV-1 Gag and lipid membranes take place in a "cell-like" environment. In this assay, Gag binding to lipid membranes is visually analyzed using YFP-tagged Gag synthesized in a wheat germ-based in vitro translation system and GUVs prepared by an electroformation technique. Here we describe the background and the protocols to obtain myristoylated full-length Gag proteins and GUV membranes necessary for the assay and to detect Gag-GUV binding by microscopy.


Assuntos
Produtos do Gene gag/metabolismo , HIV-1 , Ligação Proteica , Lipossomas Unilamelares/metabolismo , Proteínas de Bactérias , Membrana Celular , Proteínas Luminescentes , Microscopia de Fluorescência , Montagem de Vírus
7.
J Virol ; 89(15): 7861-73, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25995263

RESUMO

UNLABELLED: HIV-1 Gag, which drives virion assembly, interacts with a plasma membrane (PM)-specific phosphoinositide, phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. While cellular acidic phospholipid-binding proteins/domains, such as the PI(4,5)P2-specific pleckstrin homology domain of phospholipase Cδ1 (PHPLCδ1), mediate headgroup-specific interactions with corresponding phospholipids, the exact nature of the Gag-PI(4,5)P2 interaction remains undetermined. In this study, we used giant unilamellar vesicles (GUVs) to examine how PI(4,5)P2 with unsaturated or saturated acyl chains affect membrane binding of PHPLCδ1 and Gag. Both unsaturated dioleoyl-PI(4,5)P2 [DO-PI(4,5)P2] and saturated dipalmitoyl-PI(4,5)P2 [DP-PI(4,5)P2] successfully recruited PHPLCδ1 to membranes of single-phase GUVs. In contrast, DO-PI(4,5)P2 but not DP-PI(4,5)P2 recruited Gag to GUVs, indicating that PI(4,5)P2 acyl chains contribute to stable membrane binding of Gag. GUVs containing PI(4,5)P2, cholesterol, and dipalmitoyl phosphatidylserine separated into two coexisting phases: one was a liquid phase, and the other appeared to be a phosphatidylserine-enriched gel phase. In these vesicles, the liquid phase recruited PHPLCδ1 regardless of PI(4,5)P2 acyl chains. Likewise, Gag bound to the liquid phase when PI(4,5)P2 had DO-acyl chains. DP-PI(4,5)P2-containing GUVs showed no detectable Gag binding to the liquid phase. Unexpectedly, however, DP-PI(4,5)P2 still promoted recruitment of Gag, but not PHPLCδ1, to the dipalmitoyl-phosphatidylserine-enriched gel phase of these GUVs. Altogether, these results revealed different roles for PI(4,5)P2 acyl chains in membrane binding of two PI(4,5)P2-binding proteins, Gag and PHPLCδ1. Notably, we observed that nonmyristylated Gag retains the preference for PI(4,5)P2 containing an unsaturated acyl chain over DP-PI(4,5)P2, suggesting that Gag sensitivity to PI(4,5)P2 acyl chain saturation is determined directly by the matrix-PI(4,5)P2 interaction, rather than indirectly by a myristate-dependent mechanism. IMPORTANCE: Binding of HIV-1 Gag to the plasma membrane is promoted by its interaction with a plasma membrane-localized phospholipid, PI(4,5)P2. Many cellular proteins are also recruited to the plasma membrane via PI(4,5)P2-interacting domains represented by PHPLCδ1. However, differences and/or similarities between these host proteins and viral Gag protein in the nature of their PI(4,5)P2 interactions, especially in the context of membrane binding, remain to be determined. Using a novel giant unilamellar vesicle-based system, we found that PI(4,5)P2 with an unsaturated acyl chain recruited PHPLCδ1 and Gag similarly, whereas PI(4,5)P2 with saturated acyl chains either recruited PHPLCδ1 but not Gag or sorted these proteins to different phases of vesicles. To our knowledge, this is the first study to show that PI(4,5)P2 acyl chains differentially modulate membrane binding of PI(4,5)P2-binding proteins. Since Gag membrane binding is essential for progeny virion production, the PI(4,5)P2 acyl chain property may serve as a potential target for anti-HIV therapeutic strategies.


Assuntos
Membrana Celular/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C delta/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/virologia , Infecções por HIV/enzimologia , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/química , HIV-1/genética , Humanos , Fosfolipase C delta/química , Fosfolipase C delta/genética , Ligação Proteica , Estrutura Terciária de Proteína , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
8.
Virus Res ; 193: 108-15, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24998886

RESUMO

The MA domain mediates plasma membrane (PM) targeting of HIV-1 Gag, leading to particle assembly at the PM. The interaction between MA and acidic phospholipids, in addition to N-terminal myristoyl moiety, promotes Gag binding to lipid membranes. Among acidic phospholipids, PI(4,5)P2, a PM-specific phosphoinositide, is essential for proper HIV-1 Gag localization to the PM and efficient virus particle production. Recent studies further revealed that MA-bound RNA negatively regulates HIV-1 Gag membrane binding and that PI(4,5)P2 is necessary to overcome this RNA-imposed block. In this review, we will summarize the current understanding of Gag-membrane interactions and discuss potential roles played by acidic phospholipids.


Assuntos
Membrana Celular/metabolismo , HIV-1/fisiologia , Metabolismo dos Lipídeos , Lipídeos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Antígenos HIV/química , Antígenos HIV/metabolismo , Humanos , Lipídeos/química , Microdomínios da Membrana/metabolismo , Fosfatidilinositóis/metabolismo , Fosfolipídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química
9.
J Virol ; 87(11): 6441-54, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23536680

RESUMO

In polarized T cells, HIV-1 Gag localizes to a rear-end protrusion known as the uropod in a multimerization-dependent manner. Gag-laden uropods participate in formation of virological synapses, intercellular contact structures that play a key role in cell-to-cell HIV-1 transmission. Our previous observations suggest that Gag associates with uropod-directed microdomains (UDMs) that eventually comigrate with Gag to the uropod over the cell surface. However, the nature of Gag multimerization required for this movement, the composition of the UDMs, and the molecular determinants for Gag association with these microdomains remain unknown. In this study, we found that Gag multimerization prior to budding but beyond dimerization is necessary for Gag localization to the uropods, indicating that uropod localization occurs early in the assembly process. We also found that prior to membrane curvature, Gag multimers associate with a specific subset of UDMs containing PSGL-1, CD43, and CD44 but not ICAM-1, ICAM-3, or CD59. Notably, upon association, Gag excludes ICAM-3 from this subset of UDMs, revealing an active and selective reorganization of these microdomains by Gag. This specific association between Gag and UDMs is dependent on the highly basic region (HBR) in the Gag matrix (MA) domain. The overall positive charge of the HBR was needed for the interaction with the specific UDM subset, while the exact HBR sequence was not, unlike that seen for MA binding to the plasma membrane phospholipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. Taken together, these findings revealed that HIV-1 Gag associates with specific microdomains present in polarized T cells in an MA-dependent manner, which results in modification of the microdomain constituents.


Assuntos
Polaridade Celular , Infecções por HIV/metabolismo , HIV-1/metabolismo , Microdomínios da Membrana/virologia , Linfócitos T/citologia , Linfócitos T/virologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , HIV-1/química , HIV-1/genética , Humanos , Microdomínios da Membrana/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Linfócitos T/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
10.
FEBS Lett ; 584(3): 493-9, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19968988

RESUMO

Immune cells navigate through different environments where they experience different mechanical forces. Responses to external forces are determined by the mechanical properties of a cell and they depend to a large extent on the actin-rich cell cortex. We report here that Myo1G, a previously uncharacterised member of class I myosins, is expressed specifically in haematopoietic tissues and cells. It is associated with the plasma membrane. This association is dependent on a conserved PH-domain-like myosin I tail homology motif and the head domain. However, the head domain does not need to be a functional motor. Knockdown of Myo1G in Jurkat cells decreased cell elasticity significantly. We propose that Myo1G regulates cell elasticity by deformations of the actin network at the cell cortex.


Assuntos
Membrana Celular/metabolismo , Elasticidade/fisiologia , Hematopoese/fisiologia , Miosinas/fisiologia , Actinas/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Hematopoese/genética , Técnicas In Vitro , Linfonodos/metabolismo , Camundongos , Microscopia de Força Atômica , Microscopia de Fluorescência , Miosinas/genética , Miosinas/metabolismo , RNA Interferente Pequeno , Baço/metabolismo , Timo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...