Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cortex ; 73: 180-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26457822

RESUMO

Selective processing of environmental stimuli improves processing capacity and allows adaptive modulation of behavior. The thalamus provides an effective filter of central sensory information processing. As olfactory projections, however, largely bypass the thalamus, other filter mechanisms must consequently have evolved for the sense of smell. We investigated whether specific anosmia - the inability to perceive a specific odor whereas detection of other substances is unaffected - represents an effective peripheral filter of olfactory information processing. In contrast to previous studies, we showed in a sample of 1600 normosmic subjects, that specific anosmia is by no means a rare phenomenon. Instead, while the affected odor is highly individual, the general probability of occurrence of specific anosmia is close to 1. In addition, 25 subjects performed daily olfactory training sessions with enhanced exposure to their particular "missing" smells for the duration of three months. This resulted in a significant improvement of sensitivity towards the respective specific odors. We propose specific anosmia to occur as a rule, rather than an exception, in the sense of smell. The lack of perception of certain odors may constitute a flexible peripheral filter mechanism, which can be altered by exposure.


Assuntos
Odorantes/prevenção & controle , Transtornos do Olfato/epidemiologia , Limiar Sensorial/fisiologia , Olfato/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Transtornos do Olfato/diagnóstico , Prevalência , Sensação/fisiologia , Adulto Jovem
2.
Front Psychol ; 4: 786, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24167499

RESUMO

Although most odorants we encounter in daily life are mixtures of several chemical substances, we still lack significant information on how we perceive and how the brain processes mixtures of odorants. We aimed to investigate the processing of odor mixtures using behavioral measures and functional magnetic resonance imaging (fMRI). The odor mixture contained a target odor (ambroxan) in a concentration at which it could be perceived by half of the subjects (sensitive group); the other half could not perceive the odor (insensitive group). In line with previous findings on multi-component odor mixtures, both groups of subjects were not able to distinguish a complex odor mixture containing or not containing the target odor. However, sensitive subjects had stronger activations than insensitive subjects in chemosensory processing areas such as the insula when exposed to the mixture containing the target odor. Furthermore, the sensitive group exhibited larger brain activations when presented with the odor mixture containing the target odor compared to the odor mixture without the target odor; this difference was smaller, though present for the insensitive group. In conclusion, we show that a target odor presented within a mixture of odors can influence brain activations although on a psychophysical level subjects are not able to distinguish the mixture with and without the target. On the practical side these results suggest that the addition of a certain compound to a mixture of odors may not be detected on a cognitive level; however, this additional odor may significantly change the cerebral processing of this mixture. In this context, FMRI offers unique possibilities to look at the subliminal effects of odors.

3.
Emotion ; 11(6): 1331-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21787073

RESUMO

The sense of olfaction is often reported to have a special relationship with emotional processing. Memories triggered by olfactory cues often have a very emotional load. On the other hand, basic negative or positive emotional states should be sufficient to cover the most significant functions of the olfactory system including ingestion, hazard avoidance, and social communication. Thus, we investigated whether different basic emotions can be evoked in healthy people through the sense of olfaction. We asked 119 participants which odor evokes one of the six basic emotions (happiness, disgust, anger, anxiety, sadness, and surprise); another 97 participants were asked about pictures evoking those emotions. The results showed that almost every participant could name an olfactory elicitor for happiness or disgust. Olfactory elicitors of anxiety were reported less frequently, but they were still reported by three-quarters of the participants. However, for sadness and anger only about half of the participants reported an olfactory elicitor, whereas significantly more named a visual cue. Olfactory emotion elicitors were mainly related to the classes of culture, plants, and food, and visual emotion elicitors were largely related to humans. This data supports the hypothesis that in the vast majority of people, few differentiated emotions can be elicited through the olfactory channel. These emotions are happiness, disgust, and anxiety.


Assuntos
Emoções , Odorantes , Estimulação Luminosa , Adolescente , Adulto , Ira/fisiologia , Ansiedade/fisiopatologia , Emoções/fisiologia , Feminino , Felicidade , Humanos , Masculino , Pessoa de Meia-Idade , Olfato/fisiologia , Inquéritos e Questionários , Percepção Visual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...