Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Yeast ; 41(3): 73-86, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451028

RESUMO

Schizosaccharomyces japonicus belongs to the single-genus class Schizosaccharomycetes, otherwise known as "fission yeasts." As part of a composite model system with its widely studied S. pombe sister species, S. japonicus has provided critical insights into the workings and the evolution of cell biological mechanisms. Furthermore, its divergent biology makes S. japonicus a valuable model organism in its own right. However, the currently available genome assembly contains gaps and has been unable to resolve centromeres and other repeat-rich chromosomal regions. Here we present a telomere-to-telomere long-read genome assembly of the S. japonicus genome. This includes the three megabase-length chromosomes, with centromeres hundreds of kilobases long, rich in 5S ribosomal RNA genes, transfer RNA genes, long terminal repeats, and short repeats. We identify a gene-sparse region on chromosome 2 that resembles a 331 kb centromeric duplication. We revise the genome size of S. japonicus to at least 16.6 Mb and possibly up to 18.12 Mb, at least 30% larger than previous estimates. Our whole genome assembly will support the growing S. japonicus research community and facilitate research in new directions, including centromere and DNA repeat evolution, and yeast comparative genomics.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Telômero/genética , Centrômero/genética
2.
Yeast ; 41(3): 95-107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146786

RESUMO

The fission yeast species Schizosaccharomyces japonicus is currently divided into two varieties-S. japonicus var. japonicus and S. japonicus var. versatilis. Here we examine the var. versatilis isolate CBS5679. The CBS5679 genome shows 88% identity to the reference genome of S. japonicus var. japonicus at the coding sequence level, with phylogenetic analyses suggesting that it has split from the S. japonicus lineage 25 million years ago. The CBS5679 genome contains a reciprocal translocation between chromosomes 1 and 2, together with several large inversions. The products of genes linked to the major translocation are associated with 'metabolism' and 'cellular assembly' ontology terms. We further show that CBS5679 does not generate viable progeny with the reference strain of S. japonicus. Although CBS5679 shares closer similarity to the 'type' strain of var. versatilis as compared to S. japonicus, it is not identical to the type strain, suggesting population structure within var. versatilis. We recommend that the taxonomic status of S. japonicus var. versatilis is raised, with it being treated as a separate species, Schizosaccharomyces versatilis.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Filogenia , Evolução Biológica
3.
Nat Commun ; 14(1): 5544, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684233

RESUMO

Cellular metabolism relies on just a few redox cofactors. Selective compartmentalization may prevent competition between metabolic reactions requiring the same cofactor. Is such compartmentalization necessary for optimal cell function? Is there an optimal compartment size? Here we probe these fundamental questions using peroxisomal compartmentalization of the last steps of lysine and histidine biosynthesis in the fission yeast Schizosaccharomyces japonicus. We show that compartmentalization of these NAD+ dependent reactions together with a dedicated NADH/NAD+ recycling enzyme supports optimal growth when an increased demand for anabolic reactions taxes cellular redox balance. In turn, compartmentalization constrains the size of individual organelles, with larger peroxisomes accumulating all the required enzymes but unable to support both biosynthetic reactions at the same time. Our reengineering and physiological experiments indicate that compartmentalized biosynthetic reactions are sensitive to the size of the compartment, likely due to scaling-dependent changes within the system, such as enzyme packing density.


Assuntos
Bandagens , NAD , Lisina , Paclitaxel , Peroxissomos
4.
Genetics ; 225(3)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758508

RESUMO

Standardized nomenclature for genes, gene products, and isoforms is crucial to prevent ambiguity and enable clear communication of scientific data, facilitating efficient biocuration and data sharing. Standardized genotype nomenclature, which describes alleles present in a specific strain that differ from those in the wild-type reference strain, is equally essential to maximize research impact and ensure that results linking genotypes to phenotypes are Findable, Accessible, Interoperable, and Reusable (FAIR). In this publication, we extend the fission yeast clade gene nomenclature guidelines to support the curation efforts at PomBase (www.pombase.org), the Schizosaccharomyces pombe Model Organism Database. This update introduces nomenclature guidelines for noncoding RNA genes, following those set forth by the Human Genome Organisation Gene Nomenclature Committee. Additionally, we provide a significant update to the allele and genotype nomenclature guidelines originally published in 1987, to standardize the diverse range of genetic modifications enabled by the fission yeast genetic toolbox. These updated guidelines reflect a community consensus between numerous fission yeast researchers. Adoption of these rules will improve consistency in gene and genotype nomenclature, and facilitate machine-readability and automated entity recognition of fission yeast genes and alleles in publications or datasets. In conclusion, our updated guidelines provide a valuable resource for the fission yeast research community, promoting consistency, clarity, and FAIRness in genetic data sharing and interpretation.


Assuntos
Schizosaccharomyces , Humanos , Schizosaccharomyces/genética , Alelos , Compreensão , Bases de Dados Genéticas , Fenótipo
5.
Curr Biol ; 33(11): 2175-2186.e5, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164017

RESUMO

Most eukaryotes respire oxygen, using it to generate biomass and energy. However, a few organisms have lost the capacity to respire. Understanding how they manage biomass and energy production may illuminate the critical points at which respiration feeds into central carbon metabolism and explain possible routes to its optimization. Here, we use two related fission yeasts, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, as a comparative model system. We show that although S. japonicus does not respire oxygen, unlike S. pombe, it is capable of efficient NADH oxidation, amino acid synthesis, and ATP generation. We probe possible optimization strategies through the use of stable isotope tracing metabolomics, mass isotopologue distribution analysis, genetics, and physiological experiments. S. japonicus appears to have optimized cytosolic NADH oxidation via glycerol-3-phosphate synthesis. It runs a fully bifurcated TCA pathway, sustaining amino acid production. Finally, we propose that it has optimized glycolysis to maintain high ATP/ADP ratio, in part by using the pentose phosphate pathway as a glycolytic shunt, reducing allosteric inhibition of glycolysis and supporting biomass generation. By comparing two related organisms with vastly different metabolic strategies, our work highlights the versatility and plasticity of central carbon metabolism in eukaryotes, illuminating critical adaptations supporting the preferential use of glycolysis over oxidative phosphorylation.


Assuntos
Carbono , Eucariotos , Carbono/metabolismo , Eucariotos/metabolismo , NAD/metabolismo , Metabolismo Energético , Glicólise , Aminoácidos/metabolismo , Trifosfato de Adenosina/metabolismo , Oxigênio
6.
J Cell Sci ; 136(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695178

RESUMO

Nuclear envelope (NE) expansion must be controlled to maintain nuclear shape and function. The nuclear membrane expands massively during closed mitosis, enabling chromosome segregation within an intact NE. Phosphatidic acid (PA) and diacylglycerol (DG) can both serve as biosynthetic precursors for membrane lipid synthesis. How they are regulated in time and space and what the implications are of changes in their flux for mitotic fidelity are largely unknown. Using genetically encoded PA and DG probes, we show that DG is depleted from the inner nuclear membrane during mitosis in the fission yeast Schizosaccharomyces pombe, but PA does not accumulate, indicating that it is rerouted to membrane synthesis. We demonstrate that DG-to-PA conversion catalyzed by the diacylglycerol kinase Dgk1 (also known as Ptp4) and direct glycerophospholipid synthesis from DG by diacylglycerol cholinephosphotransferase/ethanolaminephosphotransferase Ept1 reinforce NE expansion. We conclude that DG consumption through both the de novo pathway and the Kennedy pathway fuels a spike in glycerophospholipid biosynthesis, controlling NE expansion and, ultimately, mitotic fidelity.


Assuntos
Membrana Nuclear , Schizosaccharomyces , Membrana Nuclear/metabolismo , Diglicerídeos/metabolismo , Mitose , Divisão do Núcleo Celular , Schizosaccharomyces/metabolismo , Glicerofosfolipídeos/metabolismo
7.
J Cell Sci ; 135(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36148799

RESUMO

Tropomyosins are structurally conserved α-helical coiled-coil proteins that bind along the length of filamentous actin (F-actin) in fungi and animals. Tropomyosins play essential roles in the stability of actin filaments and in regulating myosin II contractility. Despite the crucial role of tropomyosin in actin cytoskeletal regulation, in vivo investigations of tropomyosin are limited, mainly due to the suboptimal live-cell imaging tools currently available. Here, we report on an mNeonGreen (mNG)-tagged tropomyosin, with native promoter and linker length configuration, that clearly reports tropomyosin dynamics in Schizosaccharomyces pombe (Cdc8), Schizosaccharomyces japonicus (Cdc8) and Saccharomyces cerevisiae (Tpm1 and Tpm2). We also describe a fluorescent probe to visualize mammalian tropomyosin (TPM2 isoform). Finally, we generated a camelid nanobody against S. pombe Cdc8, which mimics the localization of mNG-Cdc8 in vivo. Using these tools, we report the presence of tropomyosin in previously unappreciated patch-like structures in fission and budding yeasts, show flow of tropomyosin (F-actin) cables to the cytokinetic actomyosin ring and identify rearrangements of the actin cytoskeleton during mating. These powerful tools and strategies will aid better analyses of tropomyosin and F-actin cables in vivo.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Anticorpos de Domínio Único , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Citocinese , Corantes Fluorescentes/metabolismo , Mamíferos/metabolismo , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Anticorpos de Domínio Único/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo
8.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35380656

RESUMO

The fission yeast Schizosaccharomyces japonicus has recently emerged as a powerful system for studying the evolution of essential cellular processes, drawing on similarities as well as key differences between S. japonicus and the related, well-established model Schizosaccharomyces pombe. We have deployed the open-source, modular code and tools originally developed for PomBase, the S. pombe model organism database (MOD), to create JaponicusDB (www.japonicusdb.org), a new MOD dedicated to S. japonicus. By providing a central resource with ready access to a growing body of experimental data, ontology-based curation, seamless browsing and querying, and the ability to integrate new data with existing knowledge, JaponicusDB supports fission yeast biologists to a far greater extent than any other source of S. japonicus data. JaponicusDB thus enables S. japonicus researchers to realize the full potential of studying a newly emerging model species and illustrates the widely applicable power and utility of harnessing reusable PomBase code to build a comprehensive, community-maintainable repository of species-relevant knowledge.


Assuntos
Schizosaccharomyces , Bases de Dados Factuais , Schizosaccharomyces/genética
9.
Curr Opin Cell Biol ; 68: 20-27, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32950004

RESUMO

Cellular dimensions profoundly influence cellular physiology. For unicellular organisms, this has direct bearing on their ecology and evolution. The morphology of a cell is governed by scaling rules. As it grows, the ratio of its surface area to volume is expected to decrease. Similarly, if environmental conditions force proliferating cells to settle on different size optima, cells of the same type may exhibit size-dependent variation in cellular processes. In fungi, algae and plants where cells are surrounded by a rigid wall, division at smaller size often produces immediate changes in geometry, decreasing cell fitness. Here, we discuss how cells interpret their size, buffer against changes in shape and, if necessary, scale their polarity to maintain optimal shape at different cell volumes.


Assuntos
Forma Celular , Tamanho Celular , Animais , Divisão Celular , Evolução Molecular , Fungos , Expressão Gênica , Humanos , Células Vegetais , Plantas , Células Procarióticas
10.
Curr Biol ; 30(16): R942-R944, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32810455

RESUMO

At the end of mitosis, cells must remodel their nuclear envelope to produce two identical daughter nuclei. Two new studies using Schizosaccharomyces pombe provide insight into how compartmentalized nuclear pore complex disassembly allows cells that undergo closed mitosis to achieve nuclear division.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Mitose , Membrana Nuclear , Poro Nuclear , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
11.
Dev Cell ; 53(1): 27-41.e6, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32109380

RESUMO

Eukaryotic genomes are organized within the nucleus through interactions with inner nuclear membrane (INM) proteins. How chromatin tethering to the INM is controlled in interphase and how this process contributes to subsequent mitotic nuclear envelope (NE) remodeling remains unclear. We have probed these fundamental questions using the fission yeast Schizosaccharomyces japonicus, which breaks and reforms the NE during mitosis. We show that attachments between heterochromatin and the transmembrane Lem2-Nur1 complex at the INM are remodeled in interphase by the ESCRT-III/Vps4 machinery. Failure of ESCRT-III/Vps4 to release Lem2-Nur1 from heterochromatin leads to persistent association of chromosomes with the INM throughout mitosis. At mitotic exit, such trapping of Lem2-Nur1 on heterochromatin prevents it from re-establishing nucleocytoplasmic compartmentalization. Our work identifies the Lem2-Nur1 complex as a substrate for the nuclear ESCRT machinery and explains how the dynamic tethering of chromosomes to the INM is linked to the establishment of nuclear compartmentalization.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Heterocromatina/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Cromatina/metabolismo , Proteínas de Membrana/metabolismo , Mitose/fisiologia , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
Curr Biol ; 30(3): 367-380.e8, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31956022

RESUMO

Membrane function is fundamental to life. Each species explores membrane lipid diversity within a genetically predefined range of possibilities. How membrane lipid composition in turn defines the functional space available for evolution of membrane-centered processes remains largely unknown. We address this fundamental question using related fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus. We show that, unlike S. pombe that generates membranes where both glycerophospholipid acyl tails are predominantly 16-18 carbons long, S. japonicus synthesizes unusual "asymmetrical" glycerophospholipids where the tails differ in length by 6-8 carbons. This results in stiffer bilayers with distinct lipid packing properties. Retroengineered S. pombe synthesizing the S.-japonicus-type phospholipids exhibits unfolded protein response and downregulates secretion. Importantly, our protein sequence comparisons and domain swap experiments support the hypothesis that transmembrane helices co-evolve with membranes, suggesting that, on the evolutionary scale, changes in membrane lipid composition may necessitate extensive adaptation of the membrane-associated proteome.


Assuntos
Evolução Molecular , Lipídeos de Membrana/química , Proteínas de Membrana/química , Membrana Nuclear/química , Schizosaccharomyces/química , Especificidade da Espécie
13.
Nat Commun ; 10(1): 268, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664646

RESUMO

Cells of a specific cell type may divide within a certain size range. Yet, functionally optimal cellular organization is typically maintained across different cell sizes, a phenomenon known as scaling. The mechanisms underlying scaling and its physiological significance remain elusive. Here we approach this problem by interfering with scaling in the rod-shaped fission yeast Schizosaccharomyces japonicus that relies on cellular geometry cues to position the division site. We show that S. japonicus uses the Cdc42 polarity module to adjust its geometry to changes in the cell size. When scaling is prevented resulting in abnormal cellular length-to-width aspect ratio, cells exhibit severe division site placement defects. We further show that despite the generally accepted view, a similar scaling phenomenon can occur in the sister species, Schizosaccharomyces pombe. Our results demonstrate that scaling is required for normal cell function and delineate possible rules for cellular geometry maintenance in populations of proliferating cells.


Assuntos
Divisão Celular/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Schizosaccharomyces pombe/genética
14.
J Cell Sci ; 131(14)2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030298

RESUMO

A long-appreciated variation in fundamental cell biological processes between different species is becoming increasingly tractable due to recent breakthroughs in whole-genome analyses and genome editing techniques. However, the bulk of our mechanistic understanding in cell biology continues to come from just a few well-established models. In this Review, I use the highly diverse strategies of chromosome segregation in eukaryotes as an instrument for a more general discussion on phenotypic variation, possible rules underlying its emergence and its utility in understanding conserved functional relationships underlying this process. Such a comparative approach, supported by modern molecular biology tools, might provide a wider, holistic view of biology that is difficult to achieve when concentrating on a single experimental system.


Assuntos
Segregação de Cromossomos , Cromossomos/genética , Eucariotos/genética , Animais , Biologia , Genoma , Humanos , Mitose
15.
BMC Biol ; 15(1): 55, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28662661

RESUMO

Model organisms are widely used in research as accessible and convenient systems to study a particular area or question in biology. Traditionally only a handful of organisms have been widely studied, but modern research tools are enabling researchers to extend the set of model organisms to include less-studied and more unusual systems. This Forum highlights a range of 'non-model model organisms' as emerging systems for tackling questions across the whole spectrum of biology (and beyond), the opportunities and challenges, and the outlook for the future.


Assuntos
Biologia , Eucariotos , Modelos Animais , Animais , Plantas
16.
J Cell Biol ; 216(9): 2657-2667, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28655757

RESUMO

Cytokinesis in many eukaryotes involves a tension-generating actomyosin-based contractile ring. Many components of actomyosin rings turn over during contraction, although the significance of this turnover has remained enigmatic. Here, using Schizosaccharomyces japonicus, we investigate the role of turnover of actin and myosin II in its contraction. Actomyosin ring components self-organize into ∼1-µm-spaced clusters instead of undergoing full-ring contraction in the absence of continuous actin polymerization. This effect is reversed when actin filaments are stabilized. We tested the idea that the function of turnover is to ensure actin filament homeostasis in a synthetic system, in which we abolished turnover by fixing rings in cell ghosts with formaldehyde. We found that these rings contracted fully upon exogenous addition of a vertebrate myosin. We conclude that actin turnover is required to maintain actin filament homeostasis during ring contraction and that the requirement for turnover can be bypassed if homeostasis is achieved artificially.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Citocinese , Schizosaccharomyces/metabolismo , Fixadores/química , Formaldeído/química , Homeostase , Microscopia Confocal , Microscopia de Vídeo , Schizosaccharomyces/genética , Fatores de Tempo , Imagem com Lapso de Tempo
17.
Elife ; 52016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734801

RESUMO

Many eukaryotes assemble a ring-shaped actomyosin network that contracts to drive cytokinesis. Unlike actomyosin in sarcomeres, which cycles through contraction and relaxation, the cytokinetic ring disassembles during contraction through an unknown mechanism. Here we find in Schizosaccharomyces japonicus and Schizosaccharomyces pombe that, during actomyosin ring contraction, actin filaments associated with actomyosin rings are expelled as micron-scale bundles containing multiple actomyosin ring proteins. Using functional isolated actomyosin rings we show that expulsion of actin bundles does not require continuous presence of cytoplasm. Strikingly, mechanical compression of actomyosin rings results in expulsion of bundles predominantly at regions of high curvature. Our work unprecedentedly reveals that the increased curvature of the ring itself promotes its disassembly. It is likely that such a curvature-induced mechanism may operate in disassembly of other contractile networks.


Assuntos
Citoesqueleto de Actina/genética , Actomiosina/metabolismo , Citocinese/genética , Contração Muscular/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actomiosina/química , Citoplasma/genética , Citoplasma/metabolismo , Contração Muscular/fisiologia , Sarcômeros/genética , Sarcômeros/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/fisiologia
18.
Curr Opin Cell Biol ; 41: 43-50, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27062548

RESUMO

In eukaryotes, cellular genome is enclosed inside a membrane-bound organelle called the nucleus. The nucleus compartmentalizes genome replication, repair and expression, keeping these activities separated from protein synthesis and other metabolic processes. Each proliferative division, the duplicated chromosomes must be equipartitioned between the daughter cells and this requires precise coordination between assembly of the microtubule-based mitotic spindle and nuclear remodeling. Here we review a surprising variety of strategies used by modern eukaryotes to manage these processes and discuss possible mechanisms that might have led to the emergence of this diversity in evolution.


Assuntos
Evolução Biológica , Mitose , Membrana Nuclear/metabolismo , Fuso Acromático/metabolismo , Animais , Humanos , Modelos Biológicos
19.
Curr Biol ; 26(2): 237-243, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26774782

RESUMO

Eukaryotes remodel the nucleus during mitosis using a variety of mechanisms that differ in the timing and the extent of nuclear envelope (NE) breakdown. Here, we probe the principles enabling this functional diversity by exploiting the natural divergence in NE management strategies between the related fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus [1-3]. We show that inactivation of Ned1, the phosphatidic acid phosphatase of the lipin family, by CDK phosphorylation is both necessary and sufficient to promote NE expansion required for "closed" mitosis in S. pombe. In contrast, Ned1 is not regulated during division in S. japonicus, thus limiting membrane availability and necessitating NE breakage. Interspecies gene swaps result in phenotypically normal divisions with the S. japonicus lipin acquiring an S. pombe-like mitotic phosphorylation pattern. Our results provide experimental evidence for the mitotic regulation of phosphatidic acid flux and suggest that the regulatory networks governing lipin activity diverged in evolution to give rise to strikingly dissimilar mitotic programs.


Assuntos
Divisão do Núcleo Celular/fisiologia , Segregação de Cromossomos/fisiologia , Mitose/fisiologia , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Núcleo Celular/metabolismo , Compostos Orgânicos/metabolismo , Schizosaccharomyces/genética
20.
Curr Opin Microbiol ; 28: 18-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26263485

RESUMO

Cytokinesis must be regulated in time and space in order to preserve genome integrity during cell proliferation and to allow daughter cells to adopt distinct fates and geometries during differentiation. The fission yeast Schizosaccharomyces pombe has been a popular model organism for understanding spatiotemporal regulation of cytokinesis in a symmetrically dividing cell. Recent work on another member of the same genus, Schisozaccharomyces japonicus, suggests that S. pombe may have evolved an unusual division site placement mechanism based on a recently duplicated anillin paralog. Here we discuss an extraordinary evolutionary plasticity of cytokinesis within the fission yeast clade and argue that the comparative cell biology approach may provide functional insights beyond those afforded by scrutinizing individual model species.


Assuntos
Citocinese/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/fisiologia , Actinas/metabolismo , Evolução Biológica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Contráteis/genética , Proteínas Contráteis/metabolismo , Citocinese/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação Fúngica da Expressão Gênica , Mitose , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Schizosaccharomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...