Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 105(12): 9523-9541, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36207184

RESUMO

Due to climate change, periods of drought might be longer and occur more frequently, which challenges roughage production and requires changed feeding of dairy cattle by increasing the grain content of the diet. This study investigated the effect of diets with concentrate proportions up to 91% of dry matter on dry matter intake (DMI), milk production, enteric methane emission, rumen fermentation, rumen bacterial community structure, nutrient digestibility, and feeding behavior of Holstein and Jersey dairy cows. Twelve Danish Holstein and 12 Danish Jersey cows were fed ad libitum with one of 3 total mixed rations differing in concentrate proportion in a continuous design with staggered approach over 19 to 29 d. Dietary concentrate proportions were 49% (C49), 70% (C70), and 91% (C91) on dry matter basis, and were based on increasing proportions of chopped barley straw, dried beet pulp, barley, NaOH-treated wheat, dried distillers grain, and rapeseed cake at the expense of grass/clover silage, corn silage and soybean meal. Cows were adapted to the diets over a 12- to 19-d period, before rumination activity was measured over 3 d. Subsequently, spot samples of feces were collected for digestibility determination over 2 d, and gas exchange was measured on the last 3 d of the experimental period. Shortly after chamber stay, rumen liquid was collected using an oro-ruminal device. Dry matter intake was higher for Holstein than Jersey. Methane emissions (all expressions) were affected by the interaction between breed and diet. Methane per kilogram of DMI was lowered by 18 and 48% for Holstein fed C70 and C91, respectively, compared with C49, whereas this was 17 and 22% respectively for Jersey. Rumen propionate molar proportion increased more, rumen bacterial community was less diverse, and rumination time and rumination chews relative to DMI reduced less for Holstein than for Jersey cows with increasing concentrate level. In conclusion, Holstein dairy cows responded stronger to increased dietary concentrate level regarding methane mitigation, changes in rumen VFA profile, and effect on the rumen bacterial community structure than Jersey cows, whereas Jersey cows responded stronger with regard to rumination time and rumination chews (per kilogram of DMI and per kilogram of neutral detergent fiber intake) than Holstein cows. Thus, diets high in concentrates are a less effective methane mitigation strategy for Jersey than for Holstein.


Assuntos
Metano , Rúmen , Feminino , Bovinos , Animais , Fermentação , Rúmen/metabolismo , Lactação , Digestão , Leite/química , Melhoramento Vegetal , Silagem/análise , Dieta/veterinária , Zea mays/metabolismo , Comportamento Alimentar
2.
J Dairy Sci ; 103(8): 6967-6981, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32475658

RESUMO

Residual feed intake (RFI) is a measure of feed efficiency in dairy cattle. This study modeled phenotypic RFI of first- and second-parity Holstein and Jersey dairy cows within 9 lactation segments (consecutive segments of 4 wk each) covering the first 36 lactation weeks. We aimed to evaluate physical activity and daily methane production as additional energy sinks in the estimation of RFI, to examine the correlations of RFI among the first 36 wk of lactation (WOL), and to evaluate whether parities and breeds show similar results. Records for first-parity Holstein (n = 449), second-parity Holstein (n = 298), first-parity Jersey (n = 195), and second-parity Jersey cows (n = 146) were used. Model 1 included the following energy sinks: energy-corrected milk yield, metabolic body weight (BW), body condition score (BCS), daily changes in BW (ΔBW) and BCS (ΔBCS), and physical activity. Model 2 was based on a subset of the data and only for Holstein cows, and included the same energy sinks as Model 1, plus daily methane production. The trajectories of segment-specific partial regression coefficients (PRC) of DMI on activity were similar across parities but differed slightly between breeds. For daily methane production, the trajectory in PRC decreased over lactation segments for first- and second-parity Holstein cows. The trajectories in PRC of DMI on energy-corrected milk yield, metabolic BW, BCS, and ΔBW were generally similar across parities, except for ΔBCS. Activity accounted for on average 7.3, 6.8, 7.2, and 6.4% of DMI for first-parity Holsteins, second-parity Holsteins, first-parity Jerseys, and second-parity Jerseys, respectively. Methane losses accounted for 8.7% and 8.5% of DMI for first- and second-parity Holstein cows, respectively. Repeatability estimates for RFI over 36 WOL for Model 1 were 0.63 for first-parity Holsteins, 0.65 for second-parity Holsteins, 0.76 for first-parity Jerseys, and 0.80 for second-parity Jerseys. For Model 2, the estimates were 0.59 and 0.61 for first- and second-parity Holstein cows, respectively. Correlations of RFI between WOL varied in strength, with weak correlations for the first 2 to 3 WOL with other WOL. In conclusion, physical activity and daily methane production accounted for part of DMI, and RFI of dairy cattle is not the same trait throughout lactation.


Assuntos
Ração Animal/análise , Metabolismo Energético/fisiologia , Comportamento Alimentar , Lactação/fisiologia , Condicionamento Físico Animal , Animais , Peso Corporal/genética , Bovinos , Feminino , Metano/metabolismo , Leite/metabolismo , Paridade , Fenótipo , Gravidez
3.
J Dairy Sci ; 102(11): 9902-9918, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31495619

RESUMO

Essential oils (EO) from oregano may have antimicrobial properties, potentially representing a methane mitigation strategy suitable for organic production. This study aimed to (1) examine the potential of oregano in lowering enteric methane production of dairy cows fed differing levels of dried oregano (Origanum vulgare ssp. hirtum) plant material containing high levels of EO; (2) determine whether differing levels of dried oregano plant material of another subspecies (Origanum vulgare ssp. vulgare) with naturally low levels of EO in feed affected enteric methane production; and (3) evaluate the effect of various levels of the 2 oregano subspecies (containing high or low levels of EO) in feed on rumen fermentation, nutrient digestibility, and milk fatty acids. Each experiment had a 4 × 4 Latin square design using 4 lactating Danish Holstein dairy cows that had rumen, duodenal, and ileal cannulas and were fed 4 different levels of oregano. Experiment 1 used low EO oregano [0.12% EO of oregano dry matter (DM)] and evaluated a control (C) diet with no oregano and 3 oregano diets with 18 (low; L), 36 (medium; M), and 53 g of oregano DM/kg of dietary DM (high; H). Experiment 2 used high EO oregano (4.21% EO of oregano DM) with 0, 7, 14, and 21 g of oregano DM/kg of dietary DM for C, L, M, and H, respectively. Oregano was added to the diets by substituting grass/clover silage on a DM basis. Low or high EO oregano in feed did not affect dry matter intake (DMI) or methane production (grams per day, grams per kilogram of DMI, grams per kilogram of energy-corrected milk, and percentage of gross energy intake). Rumen fermentation was slightly affected by diet in experiment 1, but was not affected by diet in experiment 2. In both experiments, the apparent total-tract digestibility of DM, organic matter, and neutral detergent fiber decreased linearly and cubically (a cubic response was not observed for neutral detergent fiber) with increasing dietary oregano content, while milk fatty acids were slightly affected. In conclusion, dried oregano plant material with either high or low levels of EO did not lower the methane production of dairy cows over 4 consecutive days, and no substantial effects were observed on rumen fermentation or nutrient digestibility. This conclusion regarding methane production is in contrast with literature and requires further study.


Assuntos
Bovinos/fisiologia , Ingestão de Energia/efeitos dos fármacos , Ácidos Graxos/análise , Metano/metabolismo , Leite/química , Origanum , Silagem/análise , Animais , Dieta/veterinária , Fibras na Dieta/metabolismo , Digestão/efeitos dos fármacos , Feminino , Fermentação , Lactação , Nutrientes/metabolismo , Poaceae , Rúmen/metabolismo
4.
J Dairy Sci ; 101(11): 9926-9940, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30197132

RESUMO

Improving feed efficiency of dairy cows through breeding is expected to reduce enteric methane production per unit of milk produced. This study examined the effect of 2 forage-to-concentrate ratios on methane production, rumen fermentation, and nutrient digestibility in Holstein and Jersey dairy cows divergent in residual feed intake (RFI). Before experimental onset, RFI was estimated using a random regression model on phenotypic herd data. Ten lactating Holstein and 10 lactating Jersey cows were extracted from the herd and allocated to a high or low pre-experimental RFI group of 5 animals each within breed. Cows were fed ad libitum with total mixed rations either low (LC) or high (HC) in concentrates during 3 periods in a crossover design with a back-cross and staggered approach. Forage-to-concentrate ratio was 68:32 for LC and 39:61 for HC. Cows adapted to the diets in 12 to 24 d and feces were subsequently collected on 2 d. Afterward, gas exchange was measured in respiration chambers and rumen liquid was collected once after cows exited the chambers. Pre-experimental RFI was included in the statistical analysis as a class (low and high RFI) or continuous variable. Methane per kilogram of dry matter intake (DMI) was lower for Holsteins than Jerseys and the response to increased concentrate level was more pronounced for Holsteins than Jerseys (27.2 vs.13.8%); a similar pattern was found for the acetate:propionate ratio. However, methane production per kilogram of energy-corrected milk (ECM) was unaffected by breed. Further, total-tract digestibility of neutral detergent fiber was higher for Jerseys than Holsteins. For RFI as a class variable, DMI, methane production regardless of the expression, and digestibility were unaffected by RFI. For RFI as a continuous variable, DMI was lower and methane per kilogram of DMI was higher for cows with negative (efficient) than positive (inefficient) RFI values, and neutral detergent fiber digestibility was higher for Holsteins with negative than positive RFI values, but not for Jerseys. Daily methane production and methane per kilogram of ECM were unaffected by RFI. In conclusion, methane per kilogram of DMI of Jerseys was lowered to a smaller extent in response to the HC diet than of Holsteins. When pre-experimental RFI was used as a continuous variable, higher methane per kilogram of DMI was found for cows with negative RFI than positive RFI values, but not for methane per kilogram of ECM. These findings call for validation in larger studies.


Assuntos
Ração Animal , Bovinos/metabolismo , Metano/metabolismo , Rúmen/metabolismo , Animais , Estudos Cross-Over , Fibras na Dieta/metabolismo , Digestão , Fezes , Feminino , Fermentação , Lactação , Leite , Distribuição Aleatória
5.
J Dairy Sci ; 101(8): 7618-7624, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29753478

RESUMO

Evaluation and mitigation of enteric methane (CH4) emissions from ruminant livestock, in particular from dairy cows, have acquired global importance for sustainable, climate-smart cattle production. Based on CH4 reference measurements obtained with the SF6 tracer technique to determine ruminal CH4 production, a current equation permits evaluation of individual daily CH4 emissions of dairy cows based on milk Fourier transform mid-infrared (FT-MIR) spectra. However, the respiration chamber (RC) technique is considered to be more accurate than SF6 to measure CH4 production from cattle. This study aimed to develop an equation that allows estimating CH4 emissions of lactating cows recorded in an RC from corresponding milk FT-MIR spectra and to challenge its robustness and relevance through validation processes and its application on a milk spectral database. This would permit confirming the conclusions drawn with the existing equation based on SF6 reference measurements regarding the potential to estimate daily CH4 emissions of dairy cows from milk FT-MIR spectra. A total of 584 RC reference CH4 measurements (mean ± standard deviation of 400 ± 72 g of CH4/d) and corresponding standardized milk mid-infrared spectra were obtained from 148 individual lactating cows between 7 and 321 d in milk in 5 European countries (Germany, Switzerland, Denmark, France, and Northern Ireland). The developed equation based on RC measurements showed calibration and cross-validation coefficients of determination of 0.65 and 0.57, respectively, which is lower than those obtained earlier by the equation based on 532 SF6 measurements (0.74 and 0.70, respectively). This means that the RC-based model is unable to explain the variability observed in the corresponding reference data as well as the SF6-based model. The standard errors of calibration and cross-validation were lower for the RC model (43 and 47 g/d vs. 66 and 70 g/d for the SF6 version, respectively), indicating that the model based on RC data was closer to actual values. The root mean squared error (RMSE) of calibration of 42 g/d represents only 10% of the overall daily CH4 production, which is 23 g/d lower than the RMSE for the SF6-based equation. During the external validation step an RMSE of 62 g/d was observed. When the RC equation was applied to a standardized spectral database of milk recordings collected in the Walloon region of Belgium between January 2012 and December 2017 (1,515,137 spectra from 132,658 lactating cows in 1,176 different herds), an average ± standard deviation of 446 ± 51 g of CH4/d was estimated, which is consistent with the range of the values measured using both RC and SF6 techniques. This study confirmed that milk FT-MIR spectra could be used as a potential proxy to estimate daily CH4 emissions from dairy cows provided that the variability to predict is covered by the model.


Assuntos
Bovinos/metabolismo , Análise de Fourier , Metano/análise , Leite/química , Espectrofotometria Infravermelho/veterinária , Animais , Feminino , Lactação , Espectrofotometria Infravermelho/métodos
6.
BMC Genomics ; 18(1): 258, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28340555

RESUMO

BACKGROUND: The selective breeding of cattle with high-feed efficiencies (FE) is an important goal of beef and dairy cattle producers. Global gene expression patterns in relevant tissues can be used to study the functions of genes that are potentially involved in regulating FE. In the present study, high-throughput RNA sequencing data of liver biopsies from 19 dairy cows were used to identify differentially expressed genes (DEGs) between high- and low-FE groups of cows (based on Residual Feed Intake or RFI). Subsequently, a profile of the pathways connecting the DEGs to FE was generated, and a list of candidate genes and biomarkers was derived for their potential inclusion in breeding programmes to improve FE. RESULTS: The bovine RNA-Seq gene expression data from the liver was analysed to identify DEGs and, subsequently, identify the molecular mechanisms, pathways and possible candidate biomarkers of feed efficiency. On average, 57 million reads (short reads or short mRNA sequences < ~200 bases) were sequenced, 52 million reads were mapped, and 24,616 known transcripts were quantified according to the bovine reference genome. A comparison of the high- and low-RFI groups revealed 70 and 19 significantly DEGs in Holstein and Jersey cows, respectively. The interaction analysis (high vs. low RFI x control vs. high concentrate diet) showed no interaction effects in the Holstein cows, while two genes showed interaction effects in the Jersey cows. The analyses showed that DEGs act through certain pathways to affect or regulate FE, including steroid hormone biosynthesis, retinol metabolism, starch and sucrose metabolism, ether lipid metabolism, arachidonic acid metabolism and drug metabolism cytochrome P450. CONCLUSION: We used RNA-Seq-based liver transcriptomic profiling of high- and low-RFI dairy cows in two breeds and identified significantly DEGs, their molecular mechanisms, their interactions with other genes and functional enrichments of different molecular pathways. The DEGs that were identified were the CYP's and GIMAP genes for the Holstein and Jersey cows, respectively, which are related to the primary immunodeficiency pathway and play a major role in feed utilization and the metabolism of lipids, sugars and proteins.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Transdução de Sinais , Transcriptoma , Animais , Cruzamento , Bovinos , Mapeamento Cromossômico , Análise por Conglomerados , Redes Reguladoras de Genes , Genes Reguladores , Sequenciamento de Nucleotídeos em Larga Escala , Fígado/metabolismo
7.
J Dairy Sci ; 99(8): 6191-6205, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27236758

RESUMO

Nitrate may lower methane production in ruminants by competing with methanogenesis for available hydrogen in the rumen. This study evaluated the effect of 4 levels of dietary nitrate addition on enteric methane production, hydrogen emission, feed intake, rumen fermentation, nutrient digestibility, microbial protein synthesis, and blood methemoglobin. In a 4×4 Latin square design 4 lactating Danish Holstein dairy cows fitted with rumen, duodenal, and ileal cannulas were assigned to 4 calcium ammonium nitrate addition levels: control, low, medium, and high [0, 5.3, 13.6, and 21.1g of nitrate/kg of dry matter (DM), respectively]. Diets were made isonitrogenous by replacing urea. Cows were fed ad libitum and, after a 6-d period of gradual introduction of nitrate, adapted to the corn-silage-based total mixed ration (forage:concentrate ratio 50:50 on DM basis) for 16d before sampling. Digesta content from duodenum, ileum, and feces, and rumen liquid were collected, after which methane production and hydrogen emissions were measured in respiration chambers. Methane production [L/kg of dry matter intake (DMI)] linearly decreased with increasing nitrate concentrations compared with the control, corresponding to a reduction of 6, 13, and 23% for the low, medium, and high diets, respectively. Methane production was lowered with apparent efficiencies (measured methane reduction relative to potential methane reduction) of 82.3, 71.9, and 79.4% for the low, medium, and high diets, respectively. Addition of nitrate increased hydrogen emissions (L/kg of DMI) quadratically by a factor of 2.5, 3.4, and 3.0 (as L/kg of DMI) for the low, medium, and high diets, respectively, compared with the control. Blood methemoglobin levels and nitrate concentrations in milk and urine increased with increasing nitrate intake, but did not constitute a threat for animal health and human food safety. Microbial crude protein synthesis and efficiency were unaffected. Total volatile fatty acid concentration and molar proportions of acetate, butyrate, and propionate were unaffected, whereas molar proportions of formate increased. Milk yield, milk composition, DMI and digestibility of DM, organic matter, crude protein, and neutral detergent fiber in rumen, small intestine, hindgut, and total tract were unaffected by addition of nitrate. In conclusion, nitrate lowered methane production linearly with minor effects on rumen fermentation and no effects on nutrient digestibility.


Assuntos
Hidrogênio/metabolismo , Metano/biossíntese , Leite/química , Nitratos/administração & dosagem , Rúmen/fisiologia , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Fibras na Dieta/análise , Digestão , Duodeno/metabolismo , Ácidos Graxos Voláteis/análise , Fezes/química , Feminino , Fermentação , Hemoglobinas/metabolismo , Concentração de Íons de Hidrogênio , Íleo/metabolismo , Lactação , Metemoglobina/metabolismo , Nitratos/urina , Compostos de Amônio Quaternário , Silagem/análise , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...