Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Kidney Int Rep ; 9(3): 549-568, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481491

RESUMO

Monogenic kidney diseases are involved in up to 15% of end-stage kidney diseases (ESKDs) in adults, and in 70 % of pediatric patients. When these disorders lead to kidney failure (KF), kidney transplantation (KT) is the preferred mode of replacement therapy. KT requires specific considerations depending on the nature of the genetic disorder, the potential oncological risk, the risk of recurrence in the graft, the possibility of specific complications of immunosuppression, and the issue of living donation. The availability of genetic testing should play an increasing role in the evaluation of patients or related living donor candidates before transplantation, relevant for the pretransplantation and posttransplantation management.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38544324

RESUMO

BACKGROUND: Molecular mechanisms of kidney stone formation remain unknown in most patients. Previous studies showed high a heritability of nephrolithiasis, but data on prevalence and characteristics of genetic disease in unselected adults with nephrolithiasis are lacking. This study was conducted to fill this important knowledge gap. METHODS: We performed whole exome sequencing in 787 participants of the Bern Kidney Stone Registry, an unselected cohort of adults with ≥ 1 past kidney stone episode (KSF), and 114 non-stone-forming individuals (NKSF). An exome-based panel of 34 established nephrolithiasis genes was analyzed and variants assessed according to ACMG criteria. Pathogenic (P) or likely pathogenic (LP) variants were considered diagnostic. RESULTS: Mean age of KSF was 47±15 years, and 18% were first time KSF. A Mendelian kidney stone disease was present in 2.9% (23 of 787) of KSF. The most common genetic diagnoses were cystinuria (SLC3A1, SLC7A9; n=13), Vitamin D-24 hydroxylase deficiency (CYP24A1; n=5) and primary hyperoxaluria (AGXT, GRHPR, HOGA1; n=3). 8.1% (64 of 787) of KSF were monoallelic for LP/P variants predisposing to nephrolithiasis, most frequently in SLC34A1/A3 or SLC9A3R1 (n=37), CLDN16 (n=8) and CYP24A1 (n=8). KSF with Mendelian disease had a lower age at the first stone event (30±14 years vs. 36±14 years, p=0.003), were more likely to have cystine stones (23.4% vs. 1.4%) and less likely to have calcium oxalate monohydrates stones (31.9% vs. 52.5%) compared to KSF without genetic diagnosis. The phenotype of KSF with variants predisposing to nephrolithiasis was subtle and showed significant overlap with KSF without diagnostic variants. In NKSF, no Mendelian disease was detected, and LP/P variants were significantly less prevalent compared to KSF (1.8% vs. 8.1%). CONCLUSION: Mendelian disease is uncommon in unselected adult KSF, yet variants predisposing to nephrolithiasis are significantly enriched in adult KSF.

4.
Ann Hum Genet ; 88(1): 76-85, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37042117

RESUMO

INTRODUCTION: Massively parallel sequencing (MPS) techniques have made a major impact on the identification of the genetic basis of inherited kidney diseases such as the ciliopathy autosomal dominant polycystic kidney disease (ADPKD). Great care must be taken when analysing MPS data in isolation from accurate phenotypic information, as this can cause misdiagnosis. METHODS: Here, we describe a family trio, recruited to the Genomics England 100,000 Genomes Project, labelled as having cystic kidney disease, who were genetically unsolved following routine data analysis pipelines. We performed a bespoke reanalysis of Whole Genome Sequencing (WGS) data and coupled this with revised phenotypic data and targeted PCR and Sanger sequencing to provide a precise molecular genetic diagnosis. RESULTS: We detected a heterozygous PKD1 frameshift variant within the WGS data which segregated with the redefined ADPKD phenotypes. An additional heterozygous exon deletion in ALG8 was also found in affected and unaffected individuals, but its precise clinical significance remains unclear. CONCLUSION: This case illustrates that reanalysis of WGS data in unsolved cases of cystic kidney disease is valuable. Clinical phenotypes must be reassessed as these may have been incorrectly recorded and evolve over time. Undertaking additional studies including genotype-phenotype correlation in wider family members provides useful diagnostic information.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Fenótipo , Rim , Genômica , Biologia Molecular , Mutação
5.
EMBO Mol Med ; 15(12): e18242, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37885358

RESUMO

Missense mutations in the uromodulin (UMOD) gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD), one of the most common monogenic kidney diseases. The unknown impact of the allelic and gene dosage effects and fate of mutant uromodulin leaves open the gap between postulated gain-of-function mutations, end-organ damage and disease progression in ADTKD. Based on two prevalent missense UMOD mutations with divergent disease progression, we generated UmodC171Y and UmodR186S knock-in mice that showed strong allelic and gene dosage effects on uromodulin aggregates and activation of ER stress and unfolded protein and immune responses, leading to variable kidney damage. Deletion of the wild-type Umod allele in heterozygous UmodR186S mice increased the formation of uromodulin aggregates and ER stress. Studies in kidney tubular cells confirmed differences in uromodulin aggregates, with activation of mutation-specific quality control and clearance mechanisms. Enhancement of autophagy by starvation and mTORC1 inhibition decreased uromodulin aggregates. These studies substantiate the role of toxic aggregates as driving progression of ADTKD-UMOD, relevant for therapeutic strategies to improve clearance of mutant uromodulin.


Assuntos
Nefropatias , Rim , Animais , Camundongos , Alelos , Progressão da Doença , Rim/metabolismo , Nefropatias/genética , Mutação , Uromodulina/genética , Uromodulina/metabolismo
6.
J Endourol ; 37(12): 1295-1304, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37830220

RESUMO

Objectives: Urinary biochemistry is used to detect and monitor conditions associated with recurrent kidney stones. There are no predictive machine learning (ML) tools for kidney stone type or recurrence. We therefore aimed to build and validate ML models for these outcomes using age, gender, 24-hour urine biochemistry, and stone composition. Materials and Methods: Data from three cohorts were used, Southampton, United Kingdom (n = 3013), Newcastle, United Kingdom (n = 5984), and Bern, Switzerland (n = 794). Of these 3130 had available 24-hour urine biochemistry measurements (calcium, oxalate, urate [Ur], pH, volume), and 1684 had clinical data on kidney stone recurrence. Predictive ML models were built for stone type (n = 5 models) and recurrence (n = 7 models) using the UK data, and externally validated with the Swiss data. Three sets of models were built using complete cases, multiple imputation, and oversampling techniques. Results: For kidney stone type one model (extreme gradient boosting [XGBoost] built using oversampled data) was able to effectively discriminate between calcium oxalate, calcium phosphate, and Ur on both internal and external validation. For stone recurrence, none of the models were able to discriminate between recurrent and nonrecurrent stone formers. Conclusions: Kidney stone recurrence cannot be accurately predicted using modeling tools built using specific 24-hour urinary biochemistry values alone. A single model was able to differentiate between stone types. Further studies to delineate accurate predictive tools should be undertaken using both known and novel risk factors, including radiomics and genomics.


Assuntos
Cálculos Renais , Sistema Urinário , Humanos , Cálculos Renais/química , Cálcio , Oxalato de Cálcio , Fatores de Risco , Ácido Úrico , Aprendizado de Máquina , Recidiva
7.
Kidney Int ; 104(5): 995-1007, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598857

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Humanos , Recém-Nascido , Camundongos , Proteínas de Transporte/metabolismo , Cílios/patologia , Rim/metabolismo , Mutação , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/genética , Serina/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
8.
J Rare Dis (Berlin) ; 2(1): 9, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288276

RESUMO

Objectives/aims: The visceral myopathies (VM) are a group of disorders characterised by poorly contractile or acontractile smooth muscle. They manifest in both the GI and GU tracts, ranging from megacystis to Prune Belly syndrome. We aimed to apply a bespoke virtual genetic panel and describe novel variants associated with this condition using whole genome sequencing data within the Genomics England 100,000 Genomes Project. Methods: We screened the Genomics England 100,000 Genomes Project rare diseases database for patients with VM-related phenotypes. These patients were screened for sequence variants and copy number variants (CNV) in ACTG2, ACTA2, MYH11, MYLK, LMOD1, CHRM3, MYL9, FLNA and KNCMA1 by analysing whole genome sequencing data. The identified variants were analysed using variant effect predictor online tool, and any possible segregation in other family members and novel missense mutations was modelled using in silico tools. The VM cohort was also used to perform a genome-wide variant burden test in order to identify confirm gene associations in this cohort. Results: We identified 76 patients with phenotypes consistent with a diagnosis of VM. The range of presentations included megacystis/microcolon hypoperistalsis syndrome, Prune Belly syndrome and chronic intestinal pseudo-obstruction. Of the patients in whom we identified heterozygous ACTG2 variants, 7 had likely pathogenic variants including 1 novel likely pathogenic allele. There were 4 patients in whom we identified a heterozygous MYH11 variant of uncertain significance which leads to a frameshift and a predicted protein elongation. We identified one family in whom we found a heterozygous variant of uncertain significance in KCNMA1 which in silico models predicted to be disease causing and may explain the VM phenotype seen. We did not find any CNV changes in known genes leading to VM-related disease phenotypes. In this phenotype selected cohort, ACTG2 is the largest monogenic cause of VM-related disease accounting for 9% of the cohort, supported by a variant burden test approach, which identified ACTG2 variants as the largest contributor to VM-related phenotypes. Conclusions: VM are a group of disorders that are not easily classified and may be given different diagnostic labels depending on their phenotype. Molecular genetic analysis of these patients is valuable as it allows precise diagnosis and aids understanding of the underlying disease manifestations. We identified ACTG2 as the most frequent genetic cause of VM. We recommend a nomenclature change to 'autosomal dominant ACTG2 visceral myopathy' for patients with pathogenic variants in ACTG2 and associated VM phenotypes. Supplementary Information: The online version contains supplementary material available at 10.1007/s44162-023-00012-z.

9.
N Engl J Med ; 388(13): e47, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36988609

Assuntos
Gota , Humanos
10.
Nephrol Dial Transplant ; 38(2): 271-282, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-34519781

RESUMO

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a clinical entity defined by interstitial fibrosis with tubular damage, bland urinalysis and progressive kidney disease. Mutations in UMOD and MUC1 are the most common causes of ADTKD but other rarer (REN, SEC61A1), atypical (DNAJB11) or heterogeneous (HNF1B) subtypes have been described. Raised awareness, as well as the implementation of next-generation sequencing approaches, have led to a sharp increase in reported cases. ADTKD is now believed to be one of the most common monogenic forms of kidney disease and overall it probably accounts for ∼5% of all monogenic causes of chronic kidney disease. Through international efforts and systematic analyses of patient cohorts, critical insights into clinical and genetic spectra of ADTKD, genotype-phenotype correlations as well as innovative diagnostic approaches have been amassed during recent years. In addition, intense research efforts are addressed towards deciphering and rescuing the cellular pathways activated in ADTKD. A better understanding of these diseases and of possible commonalities with more common causes of kidney disease may be relevant to understand and target mechanisms leading to fibrotic kidney disease in general. Here we highlight recent advances in our understanding of the different subtypes of ADTKD with an emphasis on the molecular underpinnings and its clinical presentations.


Assuntos
Doenças Renais Policísticas , Insuficiência Renal Crônica , Humanos , Mutação , Fibrose , Uromodulina/genética
11.
Clin Genet ; 103(3): 330-334, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36273371

RESUMO

Ciliopathies may be classed as primary or motile depending on the underlying ciliary defect and are usually considered distinct clinical entities. Primary ciliopathies are associated with multisystem syndromes typically affecting the brain, kidney, and eye, as well as other organ systems such as the liver, skeleton, auditory system, and metabolism. Motile ciliopathies are a heterogenous group of disorders with defects in specialised motile ciliated tissues found within the lung, brain, and reproductive system, and are associated with primary ciliary dyskinesia, bronchiectasis, infertility and rarely hydrocephalus. Primary and motile cilia share defined core ultra-structures with an overlapping proteome, and human disease phenotypes can reflect both primary and motile ciliopathies. CEP164 encodes a centrosomal distal appendage protein vital for primary ciliogenesis. Human CEP164 mutations are typically described in patients with nephronophthisis-related primary ciliopathies but have also been implicated in motile ciliary dysfunction. Here we describe a patient with an atypical motile ciliopathy phenotype and biallelic CEP164 variants. This work provides further evidence that CEP164 mutations can contribute to both primary and motile ciliopathy syndromes, supporting their functional and clinical overlap, and informs the investigation and management of CEP164 ciliopathy patients.


Assuntos
Ciliopatias , Humanos , Síndrome , Ciliopatias/genética , Proteínas/genética , Rim , Mutação , Cílios/genética
12.
J Rare Dis (Berlin) ; 1(1): 4, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569465

RESUMO

The precise molecular genetic diagnosis of a rare inherited disease is nearly always a prolonged odyssey. Fortunately, modern molecular testing strategies are allowing more diagnoses to be made. There are many different rare inherited kidney diseases and both the genetic heterogeneity of these conditions and the clinical diversity often leads to confusing nomenclature. Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an example of this. ADTKD, an inherited kidney disease that leads to worsening of kidney function over time, often culminating in end stage kidney disease, accounting for around 2% of this cohort. UMOD is the most common gene implicated in this disorder but there are at least 6 subtypes. At present, there are no specific treatments for ADTKD. Here, we review the current understanding of this condition and provide patient-centred information to allow conceptual understanding of this disease to allow better recognition, diagnosis and management.

13.
Proc Natl Acad Sci U S A ; 119(33): e2114734119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35947615

RESUMO

The kidney-specific gene UMOD encodes for uromodulin, the most abundant protein excreted in normal urine. Rare large-effect variants in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), while common low-impact variants strongly associate with kidney function and the risk of chronic kidney disease (CKD) in the general population. It is unknown whether intermediate-effect variants in UMOD contribute to CKD. Here, candidate intermediate-effect UMOD variants were identified using large-population and ADTKD cohorts. Biological and phenotypical effects were investigated using cell models, in silico simulations, patient samples, and international databases and biobanks. Eight UMOD missense variants reported in ADTKD are present in the Genome Aggregation Database (gnomAD), with minor allele frequency (MAF) ranging from 10-5 to 10-3. Among them, the missense variant p.Thr62Pro is detected in ∼1/1,000 individuals of European ancestry, shows incomplete penetrance but a high genetic load in familial clusters of CKD, and is associated with kidney failure in the 100,000 Genomes Project (odds ratio [OR] = 3.99 [1.84 to 8.98]) and the UK Biobank (OR = 4.12 [1.32 to 12.85). Compared with canonical ADTKD mutations, the p.Thr62Pro carriers displayed reduced disease severity, with slower progression of CKD and an intermediate reduction of urinary uromodulin levels, in line with an intermediate trafficking defect in vitro and modest induction of endoplasmic reticulum (ER) stress. Identification of an intermediate-effect UMOD variant completes the spectrum of UMOD-associated kidney diseases and provides insights into the mechanisms of ADTKD and the genetic architecture of CKD.


Assuntos
Insuficiência Renal Crônica , Uromodulina , Heterozigoto , Humanos , Mutação , Insuficiência Renal Crônica/genética , Uromodulina/genética
14.
Am J Hum Genet ; 109(8): 1484-1499, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35896117

RESUMO

Disorders of the autosomal dominant polycystic kidney disease (ADPKD) spectrum are characterized by the development of kidney cysts and progressive kidney function decline. PKD1 and PKD2, encoding polycystin (PC)1 and 2, are the two major genes associated with ADPKD; other genes include IFT140, GANAB, DNAJB11, and ALG9. Genetic testing remains inconclusive in ∼7% of the families. We performed whole-exome sequencing in a large multiplex genetically unresolved (GUR) family affected by ADPKD-like symptoms and identified a monoallelic frameshift variant (c.703_704delCA) in ALG5. ALG5 encodes an endoplasmic-reticulum-resident enzyme required for addition of glucose molecules to the assembling N-glycan precursors. To identify additional families, we screened a cohort of 1,213 families with ADPKD-like and/or autosomal-dominant tubulointerstitial kidney diseases (ADTKD), GUR (n = 137) or naive to genetic testing (n = 1,076), by targeted massively parallel sequencing, and we accessed Genomics England 100,000 Genomes Project data. Four additional families with pathogenic variants in ALG5 were identified. Clinical presentation was consistent in the 23 affected members, with non-enlarged cystic kidneys and few or no liver cysts; 8 subjects reached end-stage kidney disease from 62 to 91 years of age. We demonstrate that ALG5 haploinsufficiency is sufficient to alter the synthesis of the N-glycan chain in renal epithelial cells. We also show that ALG5 is required for PC1 maturation and membrane and ciliary localization and that heterozygous loss of ALG5 affects PC1 maturation. Overall, our results indicate that monoallelic variants of ALG5 lead to a disorder of the ADPKD-spectrum characterized by multiple small kidney cysts, progressive interstitial fibrosis, and kidney function decline.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Cistos/genética , Fibrose , Humanos , Rim/patologia , Mutação/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Sequenciamento do Exoma
15.
Pflugers Arch ; 474(8): 771-781, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35881244

RESUMO

The identification of genetic factors associated with the risk, onset, and progression of kidney disease has the potential to provide mechanistic insights and therapeutic perspectives. In less than two decades, technological advances yielded a trove of information on the genetic architecture of chronic kidney disease. The spectrum of genetic influence ranges from (ultra)rare variants with large effect size, involved in Mendelian diseases, to common variants, often non-coding and with small effect size, which contribute to polygenic diseases. Here, we review the paradigm of UMOD, the gene coding for uromodulin, to illustrate how a kidney-specific protein of major physiological importance is involved in a spectrum of kidney disorders. This new field of investigation illustrates the importance of genetic variation in the pathogenesis and prognosis of disease, with therapeutic implications.


Assuntos
Nefropatias , Insuficiência Renal Crônica , Humanos , Rim/metabolismo , Nefropatias/genética , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Uromodulina/genética
16.
Am J Hum Genet ; 109(5): 928-943, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35397207

RESUMO

Organ fibrosis is a shared endpoint of many diseases, yet underlying mechanisms are not well understood. Several pathways governed by the primary cilium, a sensory antenna present on most vertebrate cells, have been linked with fibrosis. Ciliopathies usually start early in life and represent a considerable disease burden. We performed massively parallel sequencing by using cohorts of genetically unsolved individuals with unexplained liver and kidney failure and correlated this with clinical, imaging, and histopathological analyses. Mechanistic studies were conducted with a vertebrate model and primary cells. We detected bi-allelic deleterious variants in TULP3, encoding a critical adaptor protein for ciliary trafficking, in a total of 15 mostly adult individuals, originating from eight unrelated families, with progressive degenerative liver fibrosis, fibrocystic kidney disease, and hypertrophic cardiomyopathy with atypical fibrotic patterns on histopathology. We recapitulated the human phenotype in adult zebrafish and confirmed disruption of critical ciliary cargo composition in several primary cell lines derived from affected individuals. Further, we show interaction between TULP3 and the nuclear deacetylase SIRT1, with roles in DNA damage repair and fibrosis, and report increased DNA damage ex vivo. Transcriptomic studies demonstrated upregulation of profibrotic pathways with gene clusters for hypertrophic cardiomyopathy and WNT and TGF-ß signaling. These findings identify variants in TULP3 as a monogenic cause for progressive degenerative disease of major organs in which affected individuals benefit from early detection and improved clinical management. Elucidation of mechanisms crucial for DNA damage repair and tissue maintenance will guide novel therapeutic avenues for this and similar genetic and non-genomic diseases.


Assuntos
Cardiomiopatia Hipertrófica , Cílios , Adulto , Animais , Cardiomiopatia Hipertrófica/metabolismo , Criança , Cílios/genética , Cílios/metabolismo , Fibrose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim , Fígado , Mutação/genética , Peixe-Zebra/genética
17.
J Am Soc Nephrol ; 33(3): 511-529, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35228297

RESUMO

BACKGROUND: Uromodulin, the most abundant protein excreted in normal urine, plays major roles in kidney physiology and disease. The mechanisms regulating the urinary excretion of uromodulin remain essentially unknown. METHODS: We conducted a meta-analysis of genome-wide association studies for raw (uUMOD) and indexed to creatinine (uUCR) urinary levels of uromodulin in 29,315 individuals of European ancestry from 13 cohorts. We tested the distribution of candidate genes in kidney segments and investigated the effects of keratin-40 (KRT40) on uromodulin processing. RESULTS: Two genome-wide significant signals were identified for uUMOD: a novel locus (P 1.24E-08) over the KRT40 gene coding for KRT40, a type 1 keratin expressed in the kidney, and the UMOD-PDILT locus (P 2.17E-88), with two independent sets of single nucleotide polymorphisms spread over UMOD and PDILT. Two genome-wide significant signals for uUCR were identified at the UMOD-PDILT locus and at the novel WDR72 locus previously associated with kidney function. The effect sizes for rs8067385, the index single nucleotide polymorphism in the KRT40 locus, were similar for both uUMOD and uUCR. KRT40 colocalized with uromodulin and modulating its expression in thick ascending limb (TAL) cells affected uromodulin processing and excretion. CONCLUSIONS: Common variants in KRT40, WDR72, UMOD, and PDILT associate with the levels of uromodulin in urine. The expression of KRT40 affects uromodulin processing in TAL cells. These results, although limited by lack of replication, provide insights into the biology of uromodulin, the role of keratins in the kidney, and the influence of the UMOD-PDILT locus on kidney function.


Assuntos
Estudo de Associação Genômica Ampla , Rim , Creatinina , Humanos , Polimorfismo de Nucleotídeo Único , Isomerases de Dissulfetos de Proteínas/genética , Uromodulina/genética
18.
Am J Med Genet C Semin Med Genet ; 190(1): 109-120, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35289079

RESUMO

Monogenic disorders of the kidney typically affect either the glomerular or tubulointerstitial compartment producing a distinct set of clinical phenotypes. Primary focal segmental glomerulosclerosis (FSGS), for instance, is characterized by glomerular scarring with proteinuria and hypertension while nephronophthisis (NPHP) is associated with interstitial fibrosis and tubular atrophy, salt wasting, and low- to normal blood pressure. For both diseases, an expanding number of non-overlapping genes with roles in glomerular filtration or primary cilium homeostasis, respectively, have been identified. TTC21B, encoding IFT139, however has been associated with disorders of both the glomerular and tubulointerstitial compartment, and linked with defective podocyte cytoskeleton and ciliary transport, respectively. Starting from a case report of extreme early-onset hypertension, proteinuria, and progressive kidney disease, as well as data from the Genomics England 100,000 Genomes Project, we illustrate here the difficulties in assigning this mixed phenotype to the correct genetic diagnosis. Careful literature review supports the notion that biallelic, often hypomorph, missense variants in TTC21B are commonly associated with early-onset hypertension and histological features of both FSGS and NPHP. Increased clinical recognition of this mixed glomerular and tubulointerstitial disease with often mild or absent features of a typical ciliopathy as well as inclusion of TTC21B on gene panels for early-onset arterial hypertension might shorten the diagnostic odyssey for patients affected by this rare tubuloglomerular kidney disease.


Assuntos
Glomerulosclerose Segmentar e Focal , Hipertensão , Nefropatias , Feminino , Fibrose , Glomerulosclerose Segmentar e Focal/complicações , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Hipertensão/genética , Rim/patologia , Nefropatias/genética , Masculino , Proteinúria/complicações , Proteinúria/genética , Proteinúria/patologia
20.
Ann Hum Genet ; 86(3): 145-152, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34888854

RESUMO

Alport syndrome is a genetic disorder affecting the basement membranes of the kidney, ear and eye, and represents a leading cause of monogenic kidney disease. Alport syndrome is genetically heterogeneous with three key genes involved (COL4A3-5) and several transmission patterns, including monogenic X-linked, autosomal recessive/dominant and digenic. We report a consanguineous family where 13 individuals presented variable features of Alport syndrome including kidney failure on two generations and male-to-male transmission, suggesting autosomal dominant inheritance. COL4A3-5 gene panel analysis surprisingly reveals two distinct, confirmed splice-altering variants in COL4A3 (NM_000091.4: c.1150+5G>A and c.4028-3C>T) present in homozygous or compound heterozygous state in individuals with kidney failure. This adds a further mode of transmission for Alport syndrome where, in a consanguineous family, the independent segregation of two variants at the same locus may create a pseudodominant transmission pattern. These findings highlight the importance of a molecular diagnosis in Alport syndrome for genetic risk counselling, given the variable modes of inheritance, but also the pitfalls of assuming identity by descent in consanguineous families.


Assuntos
Colágeno Tipo IV , Nefrite Hereditária , Insuficiência Renal , Autoantígenos/genética , Colágeno Tipo IV/genética , Humanos , Masculino , Mutação , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...