Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 86(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29203542

RESUMO

Cells of the monocyte/macrophage lineage play important roles in the pathogenesis of inflammatory bowel diseases, but they are also present in the normal healthy intestine, where they are critical for maintaining homeostasis. It has been unclear whether the proinflammatory roles of intestinal macrophages reflect altered behavior of the existing resident cells, or whether they involve recruitment of a distinct cell type. Here, we have explored these ideas using the model of colitis induced by Helicobacter hepaticus in the context of neutralization or deletion of interleukin-10 (IL-10). Granulocytes and monocytes made up most of the inflammatory myeloid infiltrates found in the colon of H. hepaticus-infected colitic mice, rising to a peak within 2 weeks of H. hepaticus inoculation but taking several months to resolve completely. The inflammatory response was dependent on the combined presence of H. hepaticus and absence of IL-10 and was accompanied by increased production of inflammatory mediators such as IL-1ß, tumor necrosis factor alpha (TNF-α), IL-6, and IL-23p19 by infiltrating myeloid cells, mostly relatively immature cells of the macrophage lineage that express intermediate levels of CX3CR1. In contrast, the population of mature CX3CR1hi macrophages did not expand as markedly during colitis, and these cells made little contribution to inflammatory mediator production. Taking into account their numerical dominance in the myeloid compartment, we conclude that newly recruited monocytes are the main source of proinflammatory mediators in colitis induced in the absence of IL-10 signaling and that altered behavior of mature macrophages is not a major component of this pathology.


Assuntos
Receptor 1 de Quimiocina CX3C/análise , Colite/patologia , Citocinas/metabolismo , Infecções por Helicobacter/patologia , Helicobacter hepaticus/patogenicidade , Macrófagos/química , Macrófagos/imunologia , Animais , Colo/patologia , Modelos Animais de Doenças , Feminino , Granulócitos/imunologia , Camundongos Endogâmicos C57BL
2.
J Allergy Clin Immunol ; 137(2): 482-91, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26299987

RESUMO

BACKGROUND: Atopic dermatitis (AD) is an inflammatory skin condition that can occur in early life, predisposing to asthma development in a phenomenon known as the atopic march. Although genetic and environmental factors are known to contribute to AD and asthma, the mechanisms underlying the atopic march remain poorly understood. Filaggrin loss-of-function mutations are a major genetic predisposer for the development of AD and progression to AD-associated asthma. OBJECTIVE: We sought to experimentally address whether filaggrin mutations in mice lead to the development of spontaneous eczematous inflammation and address the aberrant immunologic milieu arising in a mouse model of filaggrin deficiency. METHODS: Filaggrin mutant mice were generated on the proallergic BALB/c background, creating a novel model for the assessment of spontaneous AD-like inflammation. Independently recruited AD case collections were analyzed to define associations between filaggrin mutations and immunologic phenotypes. RESULTS: Filaggrin-deficient mice on a BALB/c background had profound spontaneous AD-like inflammation with progression to compromised pulmonary function with age, reflecting the atopic march in patients with AD. Strikingly, skin inflammation occurs independently of adaptive immunity and is associated with cutaneous expansion of IL-5-producing type 2 innate lymphoid cells. Furthermore, subjects with filaggrin mutations have an increased frequency of type 2 innate lymphoid cells in the skin in comparison with control subjects. CONCLUSION: This study provides new insights into our understanding of the atopic march, with innate immunity initiating dermatitis and the adaptive immunity required for subsequent development of compromised lung function.


Assuntos
Imunidade Adaptativa , Dermatite Atópica/complicações , Dermatite Atópica/imunologia , Imunidade Inata , Pneumonia/etiologia , Animais , Dermatite Atópica/genética , Dermatite Atópica/patologia , Modelos Animais de Doenças , Proteínas Filagrinas , Proteínas de Filamentos Intermediários/deficiência , Proteínas de Filamentos Intermediários/genética , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Camundongos , Camundongos Transgênicos , Mutação , Fenótipo , Pneumonia/patologia , Pele/imunologia , Pele/metabolismo , Pele/patologia
3.
J Exp Med ; 212(6): 875-82, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25964370

RESUMO

Group 2 innate lymphoid cells (ILC2s) are often found associated with mucosal surfaces where they contribute to protective immunity, inappropriate allergic responses, and tissue repair. Although we know they develop from a common lymphoid progenitor in the bone marrow (BM), the specific lineage path and transcriptional regulators that are involved are only starting to emerge. After ILC2 gene expression analysis we investigated the role of Bcl11b, a factor previously linked to T cell commitment, in ILC2 development. Using combined Bcl11b-tom and Id2-gfp reporter mice, we show that Bcl11b is expressed in ILC2 precursors in the BM and maintained in mature ILC2s. In vivo deletion of Bcl11b, by conditional tamoxifen-induced depletion or by Bcl11b(-/-) fetal liver chimera reconstitution, demonstrates that ILC2s are wholly dependent on Bcl11b for their development. Notably, in the absence of Bcl11b there is a concomitant expansion of the RORγt(+) ILC3 population, suggesting that Bcl11b may negatively regulate this lineage. Using Nippostrongylus brasiliensis infection, we reveal that the absence of Bcl11b leads to impaired worm expulsion, caused by a deficit in ILC2s, whereas Citrobacter rodentium infection is cleared efficiently. These data clearly establish Bcl11b as a new factor in the differentiation of ILC2s.


Assuntos
Linfócitos/citologia , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/microbiologia , Células da Medula Óssea/parasitologia , Linhagem da Célula , Citrobacter rodentium , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Humanos , Fígado/embriologia , Linfócitos/microbiologia , Linfócitos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nippostrongylus
4.
Immunity ; 41(2): 283-95, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25088770

RESUMO

Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. Deletion of MHCII renders IL-13-expressing ILC2s incapable of efficiently inducing Nippostrongylus brasiliensis expulsion. Thus, during transition to adaptive T cell-mediated immunity, the ILC2 and T cell crosstalk contributes to their mutual maintenance, expansion and cytokine production. This interaction appears to augment dendritic-cell-induced T cell activation and identifies a previously unappreciated pathway in the regulation of type-2 immunity.


Assuntos
Comunicação Celular/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Nippostrongylus/imunologia , Células Th2/imunologia , Animais , Apresentação de Antígeno/imunologia , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Imunidade Celular , Imunidade Inata , Interleucina-13/biossíntese , Interleucina-13/metabolismo , Interleucina-2/biossíntese , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Blood ; 117(6): 1851-60, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21148810

RESUMO

During innate immune responses, the inflammatory CC chemokine receptors CCR1, CCR2, and CCR5 mediate the recruitment of blood monocytes to infected tissues by promoting cell migration in response to chemokines CCL2-5. Toll-like receptors also play an essential role, allowing pathogen recognition by the recruited monocytes. Here, we demonstrate that Toll-like receptor 2 (TLR2) stimulation by lipoteichoic acid (LTA) from Staphylococcus aureus leads to gradual down-modulation of CCR1, CCR2, and CCR5 from the plasma membrane of human blood-isolated monocytes and inhibits chemotaxis. Interestingly, LTA does not promote rapid desensitization of chemokine-mediated calcium responses. We found that the TLR2 crosstalk with chemokine receptors is not dependent on the Toll/interleukin-1 receptor domain-containing adaptor protein, but instead involves phospholipase C, the small G protein Rac1, and is phorbol ester sensitive. Activation of this pathway by LTA lead to ß-arrestin-mediated endocytosis of Ser349-phosphorylated CCR5 into recycling endosomes, as does CCL5 treatment. However, LTA-induced internalization of CCR5 is a slower process associated with phospholipase C-mediated and phorbol ester-sensitive phosphorylation. Overall, our data indicate that TLR2 negatively regulates CCR1, CCR2, and CCR5 on human blood monocytes by activating the machinery used to support chemokine-dependent down-modulation and provide a molecular mechanism for inhibiting monocyte migration after pathogen recognition.


Assuntos
Monócitos/imunologia , Receptores CCR1/sangue , Receptores CCR2/sangue , Receptores CCR5/sangue , Receptor 2 Toll-Like/sangue , Sinalização do Cálcio/efeitos dos fármacos , Movimento Celular/imunologia , Quimiotaxia de Leucócito , Regulação para Baixo/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Técnicas In Vitro , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Fosforilação , Receptor Cross-Talk/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Staphylococcus aureus/imunologia , Ácidos Teicoicos/imunologia , Ácidos Teicoicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...